Environmental Effects on the Norbornadiene-quadricyclane Photoswitch for Molecular Solar Thermal Energy Storage

Main Article Content

Christian Danø
Kurt V Mikkelsen*

Abstract

Today’s need for renewable energy combined with modern societies' reliability on on-demand power leads us to find solutions that can store excess or produce directly to storage for later use. A MOlecular Solar Thermal (MOST) based on norbornadiene/quadricyclane(NBD/QC) does the latter with an isomeric photoswitching molecule pair. The theoretical studies of molecular solar thermals (MOST) provide a needed understanding of potential synthetic candidates. We have investigated an array of more complex solvation models for the norbornadiene/quadricycle (NBD/QC) photoswitch and the impacts of the models on the first absorption energy. Our results have been obtained with various density functional theoretical methods and basis sets.

Article Details

Danø, C., & Mikkelsen, K. V. (2023). Environmental Effects on the Norbornadiene-quadricyclane Photoswitch for Molecular Solar Thermal Energy Storage. International Journal of Physics Research and Applications, 6(2), 203–215. https://doi.org/10.29328/journal.ijpra.1001074
Research Articles

Copyright (c) 2023 Danø C, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Service RF. Solar energy. Is it time to shoot for the sun? Science. 2005 Jul 22;309(5734):548-51. doi: 10.1126/science.309.5734.548. PMID: 16040683.

Lewis NS, Nocera DG. Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15729-35. doi: 10.1073/pnas.0603395103. Epub 2006 Oct 16. Erratum in: Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):20142. PMID: 17043226; PMCID: PMC1635072.

Kucharski TJ, Tian Y, Akbulatov S, Boulatov R. Chemical solutions for the closed-cycle storage of solar energy. Energy Environ Sci. 2011; 4: 4449–4472.

Moth-Poulsen K, Ćoso D, Börjesson K, Vinokurov N, Meier SK, Majumdar A, Vollhardt KPC, Segalman RA. Molecular solar thermal (MOST) energy storage and release system. Energy Environ Sci. 2012; 5: 8534–8537.

Lennartson A, Roffey A, Moth-Poulsen K. Designing photoswitches for molecular solar thermal energy storage. Tetrahedron Lett. 2015; 56: 1457–1465.

Wang Z, Losantos R, Sampedro D, Morikawa Ma, Börjesson K, Kimizuka N, Moth-Poulsen KJ. Demonstration of an azobenzene derivative based solar thermal energy storage system. Mater Chem A. 2019; 7: 15042–15047.

Kucharski TJ, Ferralis N, Kolpak AM, Zheng JO, Nocera DG, Grossman JC. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels. Nat Chem. 2014 May;6(5):441-7. doi: 10.1038/nchem.1918. Epub 2014 Apr 13. PMID: 24755597.

Yoshida Zi. New molecular energy storage systems. J Photo Chem. 1985; 29: 27–40.

Dreos A, Börjesson K, Wang Z, Roffey A, Norwood Z, Kushnir D, Moth-Poulsen K. Exploring the potential of a hybrid device combining solar water heating and molecular solar thermal energy storage. Energy Environ Sci. 2017; 10: 728–734.

Quant M, Lennartson A, Dreos A, Kuisma M, Erhart P, Börjesson K, Moth-Poulsen K. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar-Thermal Energy Storage. Chemistry. 2016 Sep 5;22(37):13265-74. doi: 10.1002/chem.201602530. Epub 2016 Aug 5. PMID: 27492997; PMCID: PMC5096010.

Hillers-Bendtsen AE, Kjeldal FØ, Mikkelsen KV. Molecular solar thermal energy storage properties of photochromic molecules physisorbed onto nanoparticles. Chem Phys Lett. 2019; 733: 136661.

Hillers-Bendtsen AE, Hansen MH, Mikkelsen KV. The influence of nanoparticles on the excitation energies of the photochromic dihydroazulene/vinylheptafulvene system. Phys Chem Chem Phys. 2019.

Hillers-Bendtsen AE, Mikkelsen KV. The influence of gold nanoparticles on the two photon absorption of photochromic molecular systems. Phys Chem Chem Phys. 2019; 21: 18577–18588.

Boye IMI , Hansen MH , Mikkelsen KV . The influence of nanoparticles on the polarizabilities and hyperpolarizabilities of photochromic molecules. Phys Chem Chem Phys. 2018 Sep 19;20(36):23320-23327. doi: 10.1039/c8cp03645d. PMID: 30175339.

Luchs T, Lorenz P, Hirsch A. Efficient Cyclization of the Norbornadiene-Quadricyclane Interconversion Mediated by a Magnetic [Fe3O4−CoSalphen] Nanoparticle Catalyst. Chem Photo Chem. 2020; 4: 52–58.

Wang Z, Roffey A, Losantos R, Lennartson A, Jevric M, Petersen AU, Quant M, Dreos A, Wen X, Sampedro D. Macroscopic heat release in a molecular solar thermal energy storage system. Energy Environ Sci. 2019; 12: 187–193.

Bertram M, Waidhas F, Jevric M, Fromm L, Schuschke C, Kastenmeier M, Görling A, Moth-Poulsen K, Brummel O, Libuda J. Norbornadiene photoswitches anchored to well-defined oxide surfaces: From ultrahigh vacuum into the liquid and the electrochemical environment. J Chem Phys. 2020; 152: 044708.

Ree N, Mikkelsen KV. Benchmark study on the optical and thermochemical properties of the norbornadiene-quadricyclane photoswitch. Chemical Physics Letters. 2021; 779: 138665.

Zen-ichi Y. Journal of Photochemistry. 1985; 29: 27-40.

Yanai T, Tew DP, Handy NC. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters. 2004; 393: 51–57.

Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K. A long-range-corrected time-dependent density functional theory. J Chem Phys. 2004 May 8;120(18):8425-33. doi: 10.1063/1.1688752. PMID: 15267767.

Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts. 2008; 120: 215–241.

Yu HS, He X, Li SL, Truhlar DG. MN15: A Kohn-Sham global-hybrid exchange-correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem Sci. 2016 Aug 1;7(8):5032-5051. doi: 10.1039/c6sc00705h. Epub 2016 Apr 6. Erratum in: Chem Sci. 2016 Sep 1;7(9):6278-6279. PMID: 30155154; PMCID: PMC6018516.

Peverati R, Truhlar DG. Communication: A global hybrid generalized gradient approximation to the exchange-correlation functional that satisfies the second-order density-gradient constraint and has broad applicability in chemistry. J Chem Phys. 2011 Nov 21;135(19):191102. doi: 10.1063/1.3663871. PMID: 22112059; PMCID: PMC3248024.

Chai JD, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys. 2008 Nov 28;10(44):6615-20. doi: 10.1039/b810189b. Epub 2008 Sep 29. PMID: 18989472.

Curtiss LA, McGrath MP, Blaudeau J, Davis NE, Binning RC, Radom L. Extension of Gaussian‐2 theory to molecules containing third‐row atoms Ga–Kr. The Journal of Chemical Physics. 1995; 103: 6104–6113.

Blaudeau JP, McGrath MP, Curtiss LA, Radom L. Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca. The Journal of Chemical Physics. 1997; 107: 5016–5021.

Wachters AJH. Gaussian Basis Set for Molecular Wavefunctions Containing Third‐Row Atoms. The Journal of Chemical Physics. 1970; 52: 1033–1036.

Hay PJ. Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition‐metal atoms. The Journal of Chemical Physics. 1977; 66: 4377–4384.

McLean AD, Chandler GS. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. The Journal of Chemical Physics. 1980; 72: 5639–5648.

Krishnan R, Binkley JS, Seeger R, Pople JA. Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. The Journal of Chemical Physics. 1980; 72: 650–654.

Raghavachari K, Trucks GW. Highly correlated systems. Excitation energies of first row transition metals Sc–Cu. The Journal of Chemical Physics. 1989; 91: 1062–1065.

McGrath MP, Radom L. Extension of Gaussian‐1 (G1) theory to bromine‐containing molecules. The Journal of Chemical Physics. 1991; 94: 511–516.

Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics. 2005; 7: 3297–3305.

Weigend F. Accurate Coulomb-fitting basis sets for H to Rn. Physical Chemistry Chemical Physics. 2006; 8: 1057–1065.

Frisch MJ. Gaussian˜16 Revision C.01. 2016; Gaussian Inc. Wallingford CT.

Cancès E, Mennucci B, Tomasi J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. The Journal of Chemical Physics. 1997; 107: 3032–3041.

Jacovella U, Carrascosa E, Buntine JT, Ree N, Mikkelsen KV, Jevric M, Moth-Poulsen K, Bieske EJ. Photo- and Collision-Induced Isomerization of a Charge-Tagged Norbornadiene-Quadricyclane System. J Phys Chem Lett. 2020 Aug 6;11(15):6045-6050. doi: 10.1021/acs.jpclett.0c01198. Epub 2020 Jul 15. PMID: 32539402; PMCID: PMC7416310.

Kendall RA, Dunning TH, Harrison RJ. Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions. The Journal of Chemical Physics. 1992; 96: 6796–6806.

Woon DE. Dunning TH. aussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. The Journal of Chemical Physics. 1993; 98: 1358–1371.

Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Mansø M , Petersen AU , Moth-Poulsen K , Nielsen MB . Establishing linear-free-energy relationships for the quadricyclane-to-norbornadiene reaction. Org Biomol Chem. 2020 Mar 18;18(11):2113-2119. doi: 10.1039/d0ob00147c. PMID: 32119025.