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Biological membranes present an essential constituent 
of living cells. Their main role is to separate the interior of 
a cell from its surrounding, however allowing the selective 
transfer of speci ic material through it. Con iguration 
changes of membranes are often correlated with important 
biological processes [1-7]. For example, they might trigger 
divisions of cells [4], adaptation of red blood cells [1] to 
temporal conditions during their transport to different parts 
of biological tissues, they might be involved in cancerous [5] 
and cell death [6] processes... Membrane structures are in 
general extremely complex, however, their key properties 
are often dominated by geometry. This was irst illustrated by 
Helfrich [8] who constructed a minimal model of membranes 
introducing curvature ields. Locally, these are represented 
by principal curvatures C1 = 1/R1 and C2 = 1/R2, where R1 and 
R2 are the corresponding curvature radii. The key quantities 
dominating energetics of membranes are the mean curvature 
H = (C1 + C2)/2 and the Gaussian curvature K = C1 C2. In 
general, membranes tend to minimize H2 for given boundary 
conditions and K plays an important role if a membrane 
undergoes a topological change (i.e. in membrane ission 
or fusion processes). Furthermore, membranes in general 
often exhibit some kind of in-plane order, which enormously 
increases the complexity of potential membrane responses 
to various stimuli. This ordering could be due to anisotropic 
membrane constituents [9], lexible hydrocarbon chains of 
lipids [10] or due to anisotropic proteins embedded within 
membranes [11]. If in-plane order exists topological defects 
(TDs) [12] are inevitably formed in membranes if they do not 
exhibit toroidal symmetry [13]. TDs in membranes correspond 
to points or lines where the in-plane ield is (mathematically) 
not uniquely de ined as illustrated in igure 1. Consequently, 
such regions are in general energetically costly. In practice, 
membranes avoid such singularities by locally “melting” [4] of 
in-plane order or by a local phase separation [9]. The former 
case corresponds to relatively strong local luctuations, via 
which the in-plane ordering is averaged out. In the latter case 
a membrane ingredient responsible for anisotropic ordering  
moves to “nonsingular” membrane parts.  

One can assign to TDs a topological charge, which is a 
conserved quantity. If membranes are treated as effectively 
two-dimensional objects, the topological charge equals 
[12] the winding number m. The later determines the total 
reorientation of the in-plane ield divided by 2π on encircling 
the defect center counterclockwise. Examples if igure 1 
represent TDs bearing charges m=1 (Figure 1a) and m=-1 
(Figure 1b). In general, TDs behave like localized electric 
charges, where m plays the role of an electrical charge. 
Furthermore, TDs are energetically costly and lat parts of the 
membrane tend to expel them. However, in closed membranes, 
their total winding number mtot is determined topologically. 
Namely, it holds [14].

                                                                                                                                  
(1)

where the integral is carried over the closed membrane 
and da stands for an in initesimally small surface area. For 
example, for the spherical (toroidal) topology it holds mtot 

= 2 (mtot = 0). Furthermore, in “normal” (relatively weak 
curvatures) conditions “elementary” TDs tend to be formed. 

(a) 

 

(b) 

 

Figure 1: (a) m=1 and (b) m=-1 point defect.
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In case of i) vector, ii) rod-like, or iii) hexatic order these 
TDs carry winding numbers i) m0 = ±1, ii) m0 = ±1/2, and 
iii) m0 = ±1/6. Therefore, a membrane of spherical topology 
exhibits at least i) two, ii) four, and iii) twelve TDs. One could 
intuitively understand this tendency by inspecting igure 2. 
Let us assume that an in-plane ordering exists, which tends 
to be locally parallel. In the case of toroidal topology, the 
ield could stream along the parallels (lines parallel to the 

equatorial line). Such topology does not impose frustration 
on orientational order and does not require any TDs igure 
2a. However, for a spherical topology TDs are unavoidable 
because the geometry enforces frustration to the orientational 
ield. In igure 2b one sees that two m=1 defects are formed at 

the poles of the structure.  Eq.(1) also suggests that positive 
(negative) Gaussian curvature attracts TDs bearing positive 
(negative) values of m [13,15], (i.e. dmtot = Kda/2π). This is 
ef iciently realized in regions with K ≠ 0 where a difference 
between the principal curvatures is relatively small. However, 
if this is not the case, the difference imposes a kind of local 
ield, referred to as the deviatoric ield [16]. Consequently, 

TDs tend to be expelled from such regions because their 
spatially non-uniform structure is incompatible with the 
ield imposed uniform ordering. Note that TDs introduce 

local inhomogeneities in membranes, which could serve as 
nucleating regions for various biological (e.g., membrane 
ission or budding) processes [3,4]. To conclude, membranes 

in general host of TDs and their positions and also the number 
is strongly affected by curvature ields. Furthermore, TDs in 
membranes could play an important role in their functionality. 

Related problems are also of strong interest for other 
branches of condensed matter physics, and even for cosmology 
and particle physics. Namely, TDs are an unavoidable 
consequence of symmetry-breaking phase transitions [12], 
which are ubiquitous in nature. 

Furthermore, their main properties are determined 
topologically, which are independent of systems’ microscopic 
details, endowing them with several universal features. For 
example, in general, the impact of curvature on TDs in two-
dimensional systems is relatively weakly understood in 
condensed matter systems. Namely, most theoretical studies 

[14,15] use covariant derivatives in expressing the elastic 
penalty of distorted ordering ields. Such approaches by default 
discard the so-called extrinsic curvature contributions [14] 
and take into account only intrinsic contributions. However, 
there are no reasonable justi ications [17,18] for this omission. 
Simple analysis [17] even suggests that the extrinsic and 
intrinsic contributions should be comparable and in several 
geometries, they enforce contradicting behaviour [17,18]. 
Therefore, by omitting extrinsic contributions several extrinsic 
curvature-driven phenomena could not be observed. Note 
that the extrinsic curvature is in biological systems commonly 
referred to as the deviatoric curvature and its impact on various 
membrane properties has been relatively well explored [9]. 
Therefore, other branches of physics could transfer some 
of this knowledge to their realm. Furthermore, the extrinsic 
curvature exhibits the impact of the higher dimensional space 
in which the lower-dimensional system of interest is embedded 
(i.e., effectively two-dimensional curved membranes are 
embedded in three dimensions). Therefore, extrinsic curvature-
driven phenomena could reveal the impacts of potentially 
existing higher dimensions, which is of interest in cosmology. 
Furthermore, the irst theory of coarsening dynamics (the 
so-called Kibble-Zurek mechanism [19]) of TDs following a 
sudden phase transition was developed in cosmology to study 
the coarsening of TDs in the Higgs ield of the early universe 
[20]. Therefore, some of this knowledge might be transferred 
also to membranes. Note that interactions between curvature 
and TDs might even resolve the origin of mysterious dark 
energy. Namely, the mainstream description of nature is 
based on the assumption that the universe is essentially lat. 
However, recent numerical studies [21] reveal that the current 
universe could exhibit inite curvature. By taking into account 
the impact of curvature one could reproduce effects, which 
are now attributed to the mysterious dark energy. Moreover, 
if relevant ields represent basic entities of nature [22], then 
TDs [23] might represent fundamental particles in cosmology’s 
Standard Model terminology…
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