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Abstract

Biochemical systems are analytically investigated after encoding the properties of the dynamics, 
which rule the time evolution of the transition properties, using some Markov models, such as 
the Hierarchical Markov-State Models. The present paper is aimed at analytically writing the 
(ϐinite) Markov chain originating from the considered Markov models. Within this framework, the 
interaction with the environment is considered, and the ergodicity of the systems obtained from 
numerical simulation is controlled and compared with the qualities of the Markov chain. The (von 
Neumann) conditions to be imposed on the Bloch equations for the biomaterial structures to be 
described analytically in a consistent way are governed. The formalisms of the ’heat bath’ and that 
of the control of the numerical errors ensure the good measure-theoretical framework and the 
ergodicity of the ϐinite chain, respectively.

The ϐinite Markov chains are investigated and the analytical expressions are presented, after 
which the Hierarchical Markov-State-Model provides the time evolution of the transition probabilities 
in biochemical systems.

The notion of heat bath is used to describe the interactions of the biomaterial with the 
environment and thus to control the uses of the projection operators in the Markovian processes 
where the appropriate measure is deϐined; the stochastic equations allow one to obtain the wanted 
measure from the probability spaces.

The cases in which a violation of the Markov property of the process occurs, i.e. in open systems, 
or dissipative processes are also considered. Furthermore, in complex molecules in biological 
systems, these features are investigated to be possibly even more dramatic. As far as molecular 
processes are concerned, this occurrence is associated with the appearance of chaotic effects with 
certain characteristics of potential surfaces: rather than the technique of isocommittors, the method 
of projectors in measure spaces is used for the Nakajima-Zwanzig paradigm for the density operator; 
this latter method complementary compares the time-convolution-less technique.

The ϐinite Markov chains are ϐinally proven to be ergodic after the control of the numerical 
errors which provide the Sinai-Markov partitions to be applied for the analysis of the measure space 
of the Markov chain, that is, one endowed with a Hilbert measure. The von Neumann conditions 
are therefore newly demonstrated to be apt to be applied to the Bloch equations for biomaterial 
structures after the use of the notion of heat bath, from which the measure space arises.

The qualities of the Hierarchical Markov-Sate Models which bring the analytical expression of 
the time evolution of probabilities of biomaterials are therefore newly analytically studied.

Introduction
The use of Hidden Markov Models in the approach to 

biology problems was analysed in a study [1] to be of use 
as far as the capability of encoding the statistical features 
of the sampled materials was concerned; in particular, the 
possibility to reproduce the patterns in time and space of the 
biological samples were delineated.

As from research [2], the Hierarchical Markov-State 
Models (MSM) of molecular processes are deϐined after the 
pi(t) probability of the system to occupy the state i at the 

time t: wij indicate the transition rate from i to j determined 
from the unrestrained simulations in the local MSM, while kij 

designate the transition rate from i to j such that each state 
is in a different local Markov state Bw n∗ the MSM containing 
the state i, and Sn the partitions, i.e. the set of Markov states 
composing the Markov model. The evolution of probabilities 
pi(t) evolve in time as,

( )
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Banach spaces are applied until the dependence on the 
projector is eliminated.

Alternatively, operators whose integral is bounded 
everywhere, and the integral is strongly continuous, can be 
used [14].

From a study [13], it can be stated that the time evolution 
of the transition probabilities is nevertheless formulated 
according to non-memory-less formalisms, where the 
memory-related parameter limit has to be examined in order 
for the realization of the Gibbs state to be achieved.

The Markovian equilibrium can be achieved in the free 
bath, as from a few works [13,15,16]; it can be discussed in 
comparison with the stochastic approach, where, from the 
probability space, the measure is obtained.

Given ρ an arbitrary trace class operator whose free 
evolution is given after the one-parameter group of isometries 
on the Banach space of the system ( with formally-deϐined 
inϐinitesimal generator), a perturbation A can be introduced; 
the equilibrium state of the Markov processes is given as 
condition on the temperature: in the weak-coupling limit, 
the exponential-decay law is obtained [17,18]. The statistical 
approach is recovered in the Banach space B of the Markovian 
system coupled with the heat bath after the Banach-space 
evolution equation; for this purpose, with B0 the Banach space 
of the Markovian system, the stochastic differential equations, 
a probability space can be deϐined

B = (Ω,F,dω)                         (2)

B is the space of the essentially bounded strongly 
F-measurable B0-valued functions on Ω: this way, B0 is identiϐied 
as the constant functions on Ω [19]. As an alternative example, 
a dissipative operator Z can be considered, whose evolution 
on a Banach space is controlled after a Markov process [20]. 
From a study [19], the space of the Markovian system coupled 
with the heat bath is now successfully upgraded to a Hilbert 
space; given eZt from a unitary group on the Hilbert space, then 
iZ is a self-adjoint operator, and the orthogonal projector onto 
the null space of Z is deϐined. After A the perturbation of the 
Markovian system, then A(ω) is a ’random’ operator-valued 
function: if iA is a self-adjoint operator, symmetric operators 
are proven to be obtained for the description of the Markov 
process.

The perturbative approach theory of (ϐinite) Markov 
chains was studied [21].

Results on the Markov chain
Theorem: The perturbation formalism of ϐinite Markov 

chains holds [22]. After a Markov chain containing a single 
irreducible set of states, derivatives of the stationary 
distributions are deϐined, and so is the fundamental matrix of 
the transition probabilities.

Where the Σwp accounts for transitions within the local 
MSM, while Σkp denotes the transition between local MSMs.

In another study [3], the different Markov Models are 
outlined, for the different biochemical systems, which are 
classiϐied according to the different (bio-) molecular reactions, 
the Markov chain originating the processes are sketched for 
schematising the different biochemical systems according to 
the stochastic biochemical systems analyses.

As an example in a research work [4], the chosen MSM 
are shaped according to the experimental techniques for 
biological macromolecules: at small ’lag’ times, an MSM is 
required to have more macrostates in order to make sure 
that each microstate is memoryless; differently, shorter ’lag’ 
time is used to describe higher-resolution MSMs. i.e. such that 
more energy minima are described. As a result, at a lower-
resolution MSM, only a few macrostates are separated after 
high-energy barriers. Several HMMs have been reviewed 
[5]; in particular, the proϐile HMMs, pair HMMs, and context-
sensitive HMMs are considered. They are demonstrated to 
be of use in biochemical context and important in similarity 
search and classiϐication.

The kij from Eq. (1) are issues after numerical simulation. 
Among the features of the simulation of Markov chains after 
Monte Carlo methods [6], the possibility to simulate the 
qualities of the Gibbs measure is outlined [7]. Markov chain 
Monte Carlo algorithms have been compared in a research 
work [8]. A study [9] presented the need for the convergence 
to the stationary distribution of Markov Chains Monte Carlo 
methods and recalled to be necessitated.

Stochastically exact simulations can be achieved from a 
few works [10,11] to shape the features of the biochemical 
network.

The measure space from the formalisms of the heat 
bath

The features of a system and a heat bath can be compared 
to the notion of an open quantum system (of which the 
latter is issued from [12]): the density operator is this way 
obtained, which obeys a time-evolution equation under the 
hypotheses that the generator be independent of time and 
that the von Neumann conditions be fulϐilled. The hypothesis 
of the exponential decay of the correlation function is taken. 
The Bloch equations of the density matrix can thus be written, 
with respect to the von Neumann conditions.

The Markovian time evolution of quantum systems: 
The analysis of the Markovian time evolution of the quantum 
systems [13] can be schematised after the presence of a 
heat bath: the degrees of freedom pertinent to the latter are 
eliminated after the formulation of one-parameter groups 
generated after the inϐinitesimal generators, with respect to 
which the suitable projector operators on the corresponding 
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The following example is reconducted. Proof Let α be an 
N-state stationary Markov chain, endowed with a transition-
probability matrix: the fundamental matrix always exists, and 
time averaged transition-probability matrix always exists.

Let α be a chain. Under the hypothesis that α contains only 
one subchain (i.e. only one irreducible set of states), then the 
solution of the equation of the stationary distribution always 
exists, as from [21].

Corollary: So do the qualities of the system β close to α.

Further qualities of the Markov chains

Under the hypothesis that the unperturbed system be 
geometrically ergodic (Foster-Ljapunov drift conditions), the 
perturbation is uniform in the weak sense on bounded time 
intervals, as from [23] after [24].

This opens the way to the construction of the Markov 
states [22].

The role of the Stochastic approaches and the taming 
of the non-Markovian properties: expressions of the 
corresponding Markov chain

In particular molecular processes, chaotic qualities are 
revealed, with certain characteristics of the potential surfaces 
of the Markov landscape. More in detail, thin high barriers 
or deep holes in exothermic reactions are described. It is 
therefore necessary that for complex molecules in biological 
systems such effects are understood and reconducted within 
the Markovian dynamics. This way, the possible apparent 
violations of Markovian property are tamed. The analysis 
of this aspect is here focused and framed within the used 
formalisms, and proven to introduce the formalisms of the 
density matrices.

In a study [25], it started with the analysis of an MSM with 
slow relaxation times. Within this scheme, trajectories occur, 
which are shorter than the ’slowest relaxation time’ (i.e. for 
which some non-Markovian features would be expected). 
These trajectories are used de facto to reconstruct the 
transition probability matrix (i.e. also the associated Markov 
chain can be analytically written [26]). The method is to be 
applied to multiple pathways, and to ’poorly-relaxed’ paths. 
From [27], the iso-committors method is proposed: iso-
committor surfaces are those surfaces that are constructed 
from the set of all the phase-space points such that the 
committor they calculated is a constant. In the corresponding 
MSM, these surfaces are non-crossing surfaces situated in 
the Markov landscape between the reactant states and the 
product states, which are non-crossing.

In the present work, the iso-committor method is proven 
as poorly-grounded for the needed analyses. The method does 
not prove very efϐicient, since the committors are in general 
not orthogonal (i.e. they become orthogonal in the Galerkin 

description). The methods of measure-theoretic analysis 
prove, differently, efϐicient, since they allow for the existence 
and uniqueness of projector operators (and their use).

From [28], some features of non-Markovian processes that 
can be reconducted to the Markovian scheme were studied. 
More in detail, the stochastic approach of the probability space 
has to be analysed as allowing for a deϐinition of a probability 
space whose measure is determining the (measure) space in 
which the PDE solution is situated [29].

The non-Markovian memory properties are concerned 
with a method of coarse-graining to be compared with [30]; in 
this case, for the generalised Langevin equations, the memory 
term is schematised as dissipative forces. The deϐinition of 
a ’memory kernel’ allows one to apply the analysis also to 
samples of data with large statistical noise.

The presence of memory term within a measure-
theoretical approach was started in [31] under the condition 
that the memory term be small with respect to the free term, 
among which the relation is cast through the proper projection 
operator.

Followingly, the way of the formalism of density matrices 
is introduced as complementary. More speciϐically, the 
projection-operator technique is employed also to describe 
those cases, in which the interaction of the system with 
the environment is not negligible. The Nakajima-Zwanzig 
projection-operator technique [32,33] is demonstrated as 
an alternative to the time-convolution-less technique [34]. 
The Nakajima-Zwanzig technique allows one to encode the 
properties of the time evolution of the transition probabilities 
into two different orthogonal subspaces, in which the density 
matrices corresponding to the two different analyses live. 
Differently, within the time-convolution-less technique, 
the projection operator technique is used to eliminate the 
memory kernel from the Nakajima-Zwanzig time equation of 
the probabilities evolution. The necessitated controls on the 
projection techniques are still under analysis [35].

Necessitated controls for biochemical materials

Controls on numerical simulations are necessitated [26].

Numerical simulations have to be performed about 
randomly-impulsed ODEs, about I’to SDEs, and about 
stochastic parabolic PDEs where white noise is approximated 
as Gaussian noise.

In the case of stochastic case PDEs (as those issued from 
[36]); in the geometrically ergodic case, the long-time weak 
convergence can therefore be proven: the perturbation theory 
is arising from numerical approximation.

Necessitated de initions: The density operator of an open 
quantum system is deϐined as the inverse of the dynamical 
map which governs the evolution of the density operator. The 
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quantum dissipation from the von Neumann conditions in the 
Bloch equation is to be set [26].

As far as the ϐirst born approximation Hilbert space is 
concerned, short-time approximation of the time evolution 
of probabilities and short-time approximation of the time 
evolution of probabilities must respect the von Neumann 
conditions [12].

The request [36] that the conditions needed to be imposed 
to prove the ergodicity of the perturbed chain must therefore 
be implemented [26].

The biochemical materials

From a study [37], the space-independent von Neumann 
Equation can be derived from the Bloch Equation.

The analytical expression of the density matrix in the 
quantum regime can be obtained; the quantum-mechanical 
formalism can be recovered for a pure state of electron spin.

The collapse of the wavefunction has to be taken as a 
measurement postulate.

Discussion
In a research work [38], the adeptness of Markov chains in 

simulating the qualities of biochemical networks is examined 
as far as the time evolution of the transition probabilities is 
concerned.

The features of the Markovian time evolution of the 
transition probabilities and the non-Markovian ones were 
compared in a study [39]. The further conditions on ergodicity 
must be controlled [40].

Conclusion
The present work is aimed at providing new analytical 

methods for the study of biochemical materials. In particular, 
the time evolution of the transition probabilities in molecular 
dynamics is analytically newly formulated. The scope of the 
research is to provide a new analytical expression of the ϐinite 
ergodic Markov chain.

For these purposes, several tools are used. The time 
evolution of the transition probabilities in the molecular 
dynamics of biochemical materials is described within the 
framework of Hierarchical MSM; to this Hierarchical MSM 
there corresponds to the above-mentioned ϐinite ergodic 
Markov chain. The work is devoted to the proof that the 
Markov chain is ϐinite and ergodic.

The tools of measure theory are employed to analyse 
the interaction with the environment, which is schematised 
as a heat bath, which is analysed after the use of projector 
operators. The comparison of the stochastic models allows 
one to construct a triple (i.e. a probability space), in which the 
measure is deϐined. As a result, it is possible to pass from a 

Banach space to a Hilbert space. The qualities of the Markov 
landscape are newly examined in great detail. More precisely, 
the effects which can lead to memory-property-like systems 
are scrutinised. These features are reconducted to Markovian 
dynamics through the deϐinition of a density operator, on 
which the suitable projectors act: as a result, the Nakajima-
Zwanzig method is juxtaposed to the time-convolution-less 
method as complementary.

The analysis is newly ready for the control of the deϐinition 
of ergodicity after the means of the control of the errors in the 
numerical approximation.

The ergodicity is outlined as relevant for the sake of 
applying the Sinai-Markov partitions.

The ϐinite ergodic Markov chain being newly deϐined, 
the von Neumann condition can be imposed on the Bloch 
equation. From this point of view, the quantum mechanical 
properties are newly demonstrated to lead to the postulate of 
the collapse of the wavefunction.
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