
 www.physicsresjournal.com 006https://doi.org/10.29328/journal.ijpra.1001077

2766-2748
INTERNATIONAL JOURNAL OF 
PHYSICS RESEARCH AND APPLICATIONS

I J P R A

Mini Review

Generation of Curved Spacetime in 
Quantum Field
Sarfraj Khan*
Department of Physics, GD. College, Begusarai, LNM University Darbhanga, Bihar, India

Abstract

To reach such a consistent theory which contains the quantum ield theory of particle physics 
and Einstein’s theory of gravitation as limiting cases, one may proceed in the following way: 
Standard quantum ield theory just ignores the effects of gravity. This is justi ied in many cases due 
to the weakness of gravitational interactions at the presently accessible scales. In a irst step beyond 
this approximation, one may consider an external gravitational ield that is not in luenced by the 
quantum ields. Here one may think of sources of gravitational ields that are not in luenced by the 
quantum ields under consideration, as high-energy experiments in the gravitational ield of the earth 
or quantum ields in the gravitational ield of dark matter and dark energy. This approach amounts to 
the treatment of quantum ield theory on curved spacetimes. The problem of quantization in curved 
spacetimes is now clearly visible. In Minkowski spacetime, there is a large group of symmetries that 
enforces a particular choice of vacuum by demanding the vacuum to be invariant. Such a criterion is 
absent for a general spacetime (M,g). We therefore do not know which state to choose as the vacuum. 
One might hope that the different prescriptions might be unitarily equivalent such that it doesn’t 
matter which state one takes to de ine the theory. Sadly this is not the case: The Stone-Von Neumann 
theorem is no longer valid for systems with an in inite amount of degrees of freedom. This means 
that unitarily inequivalent representations of the canonical commutation relations will arise, and it 
is not clear which equivalence concept representation is the physical one. In the second section of 
this chapter, we review the notions of Cauchy surfaces and global hyperbolicity.

The general collection of spacetimes is too large for 
quantum ield theory since the notion of causality is important 
to the setup of the theory. The demand of global hyperbolicity 
is that spacetime is causally similar to lat space on a global 
scale. In the third section, we brie ly review the generalization 
of the classical phase space to such a background. The fourth 
section is devoted to de ining the concepts of observers and 
reference frames. In considering what role observers might 
play in QFT it is important to have a mathematically rigorous 
notion of observer. We pose a construction of a local reference 
frame corresponding to a geodesic observer. The ifth section 
is allocated to the question of when two different choices of μ 
give rise to unitarily equivalent QFTs. Suf icient and necessary 
conditions that are needed to ensure that two theories are 
equivalent are presented and their proofs sketched. From 
this, the existence of inequivalent representations can also be 
seen as these requirements are not satis ied in general. The 
last two sections of this chapter are allocated to a short review 
of the Unruh- effect as an example of what can happen in QFT 
in general spacetimes (although it is set in lat spacetime). 
First, we review the connection between modes with respect 
to inertial time and ones with respect to accelerated time. This 
leads to the result that the Minkowski vacuum is a thermal 

state with respect to the Rindler-quantization. After this, we 
investigate the reality of this thermal bath by coupling the 
system to a model particle detector, which sheds some light 
on the interpretation of QFT as a theory of particles. 

Global hyperbolicity and space-time splits

Since we already did a lot of the work involved in the 
quantization of the free scalar ield the rest of the task is now 
fairly straightforward. As a irst task, we need to generalize 
the classical space of solutions to more general spaces. In 
order to do this we need to single out some spacetimes that 
are suf iciently nice for the wave-equation to have solutions.

Let (M, g) be some four-dimensional spacetime with metric 
signature (−, +, +, +). Throughout this thesis, we will assume 
spacetime to be time-oriented: a global choice for ’future-
pointing’ has been made. The metric tensor g is abstractly 
de ined as a map sending two vector ields to a smooth, real 
function in spacetime. In terms of components this is given by 
the contraction of indices:

g(X, Y)(x) = gμν(x)Xμ

(x)Yν(x), where X and Y are vector ields and x ∈ M.
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to the foliation as follows. If we choose spatial coordinates {xi} 
on (a patch of) Σt for i = 1, 2, 3 then {t, xi} forms a coordinate 
chart for M. This gives a basis for the tangent space: {∂t, ∂i}. 
The vector ield ∂t connects the different slices of the foliation 
but is in general not normal to the hypersurface Σt. This is 
because transport along this vector does not necessarily leave 
the spatial coordinates invariant. Hence we can decompose it 
into parts that are normal and tangential to 

Σt∂t = αN + β 

Here N is the future-directed unit normal to Σt. We call 
α the lapse of the coordinate system, which is a scalar. 
The tangential part β is called the shift and is a spacelike 
vector. Loosely speaking the lapse indicates how far away a 
neighboring hypersurface of constant time is, and the shift 
indicates how far one has to move the coordinates around 
in going to this surface. A straightforward calculation of the 
metric components in this coordinate chart gives:

gμν = −α 2 + (β+iβ)/ i βj 

βi /hij

For each spacelike subset S ∈ M we can de ine the timelike 
future of the set as

I+(S) = {x ∈ M | There is a future pointing timelike curve 
connecting S to x}. 

We likewise de ine the timelike past of S. By causal we will 
always mean: timelike or lightlike. Hence we also de ine the 
causal past/future J ±(S) of S as the sets of all points causally 
connected to S in the past/future. These sets are usually 
interpreted as all events that can be in luenced by events in S 
since light signals travel along lightlike paths. Related to this 
is the de inition of the domain of dependence of the set S. This 
is the set of events that is completely and uniquely in luenced 
by S. We de ine it as:

D+(S) = {x ∈ M | every past-pointing causal curve without 
past endpoint through x intersects S}, with D−(S) de ined 
similarly and 

D(S) = D+(S)∪D−(S). 

We see that any information reaching a point in D+(S) 
must also register on S, and any information leaving a point 
in D−(S) also does. Concretely: If we know what happens on S, 
we can infer all that happens in D(S). We exclude curves with 
a past endpoint since we want to prevent points from falling 
outside of D(S) simply because we stopped the curves through 
x before hitting S. The extra demand that we will put on our 
spacetimes is that some closed surface Σ exists that is large 
enough to capture all that happens in M. Concretely, we call 
a smooth, closed, achronal set Σ ∈ M a Cauchy surface if D(Σ) 
= M. It follows that every inextendible causal curve in M hits 
Σ exactly once. We call a spacetime Figure 1: The left igure 
shows the timelike past/future of the closed set S. The causal 
past/future J±(S) is the union of the enclosed volume with the 
dashed boundaries. The right igure shows the past/future 
domain of dependence of S. Note that these sets are always 
contained within the causal past/future, but are in general a 
lot smaller.

A classic theorem by Geroch [1] states that on a globally 
hyperbolic spacetime, we can always ind a global time 
function, ie. A smooth function increasing on any future-
directed curve whose gradient is nowhere zero. Every surface 
of constant time will then be a Cauchy surface. As such the 
topology of globally hyperbolic spacetimes is particularly 
simple, it is homeomorphic to R × Σ for some 3-manifold Σ. 
Proof of this fact can be found in the proposition [2-10].

This implies that a globally hyperbolic spacetime admits 
a foliation. A foliation is a global decomposition of spacetime 
into space and time. Concretely, it is a collection of smooth 
hypersurfaces Σt (which all have the same topology) labeled 
by a time-coordinate t such that the Σt’s together cover the 
entire manifold, whilst no two different surfaces intersect. 
We can de ine a time function at a point by looking at which 
unique Σt the point is part of. We can ind coordinates adapted 

Figure 1
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Where hij is the spatial metric induced on the tangent 
space of Σt by g in the coordinates {xi}. The inverse metric can 
then be calculated:

μν =(−1α2β+j/α2 -βiα2 h+ ij −iβjα2!)

The purpose of this formalism is to split spacetime into 
space and time separately. The covariant picture of space 
and time being the same is mathematically elegant but often 
not very practical in calculations. Choosing a Cauchy surface, 
a lapse and a shift effectively unravels the union of space 
and time. If coordinates are chosen such that β vanishes, 
the spacetime metric takes a form where space and time are 
not mixed at all. It should be clear that these choices are not 
unique: We can slice spacetime in many different ways, and 
when we have done so there are many different choices for 
lapse and shift that are available. As such, no dependence of 
physical observables on these choices is allowed.

Generalization of the classical phase space 

We now continue to the covariant generalization of 
the classical ield system. Clearly, we should swap out the 
partial derivatives for covariant derivatives in order to 
obtain a covariant equation. In fact, it is only because we 
posed the Klein-Gordon equation in Cartesian coordinates 
that we did not need to do so before because in the lat case, 
the of Christoffel symbols vanish and covariant and partial 
derivatives are the same. From this point onward, we will 
always use the symbol ∇ to denote covariant derivatives, and 
the KG-equation becomes 1

:(gμν∇μ∇ν − m2)φ = (2 − m2)φ = 0, (3.5)

Where the d’Alembertian operator is de ined by 2 = 
gμν∇μ∇ν. We have the following theorem, originally due to 
Leray:

Theorem: Let (M, g) be a globally hyperbolic spacetime 
with Cauchy surface Σ and let N be the normal vector to Σ. If φ 
and π are two smooth functions on Σ supported within some 
compact subset K then there is a unique smooth solution ψ 
to the KG-equation such that ψ|Σ = φ and Nμ∇μψ|Σ = π. This 
solution has compact support on any other Cauchy surface 
and is supported in

J+(K) ∩ J −(K). Furthermore, if

We vary the initial conditions outside of some closed subset 
S of Σ then the solution remains unchanged within D(S).

For proof of this theorem, we refer to [2] (Wald, 1984). 
A self-contained treatment of wave equations in curved 
spacetimes can be found in (Bar, Ginoux, and Pfaf le, 2007). The 
theorem above states that in a globally hyperbolic spacetime 
solutions to the KG equation are uniquely characterized by 
their footprint on a Cauchy surface, and that this information 
is enough to reconstruct the solution. The propagation of 
information is causal the potential term admits a new term 

of the right physical dimensions, namely some constant times 
the Ricci scalar. This is often added with prefactor since this 
renders the equation conformally invariant. This allows many 
interesting examples to be explicitly calculated in conformally 
lat spacetimes. We will not add it here, for the reason that 

it adds little to the discussion and we see no reason to 
introduce some extra coupling to gravity on top of changing 
the background metric to a curved one in the sense that 
was discussed above. In the previous chapter, we described 
solutions to the KG-equation by the initial data they have at t 
= 0. Clearly, the set t = 0 is a 3-surface in Minkowski space that 
hits every causal curve exactly once, and hence it is a Cauchy 
surface. The theorem above generalizes this: In a globally 
hyperbolic spacetime we pick some Cauchy surface Σ and set

V = C∞c(Σ)MC∞c(Σ)

Consisting of pairs (φ, π) of smooth functions of compact 
support on Σ. From the above theorem it follows that it is 
not important which Σ we take: If we take some compactly 
supported smooth initial conditions on one Cauchy surface, 
it uniquely hinders smooth compactly supported data on any 
other. The symplectic form is gen-eralized to

σ((φ1, π1),(φ2, π2)) = ZΣ(π1φ2 − π2φ1)√hd3x 

By the theorem above, there is a one-to-one correspondence 
between V and solutions to the wave equation. If we make this 
identi ication between ψ and (φ, π) the symplectic form reads

σ(ψ1, ψ2) = Z 

Σ(ψ1←→∇μψ2)dΣμ

Here dΣμ = Nμ√hd3x 

Is the surface measure of Σ, where Nμ is the future pointing 
normal vector to Σ and h is the determinant of the spatial 
metric. We can use Gauss’s theorem to see that this does not 
depend on the Cauchy surface that is used: Suppose we have 
Σ1, Σ2 Cauchy surfaces and denote the volume enclosed by Ω, 
then Gauss’s theorem gives us the equality: 

σ1(ψ1, ψ2) − σ2(ψ1, ψ2) = ZΩ∇μ(ψ1←→∇μψ2) = ZΩψ1(m2 
− m2)ψ2 = 0 (3.9)

This gives us two equivalent ways of looking at the 
classical phase space. These constructions use 3-dimensional 
test functions to smear the quantum ield such that it is well-
de ined. An equivalent construction is to use 4-dimensional 
test functions, and will sometimes also take this viewpoint. 
Thus, look at the space of 4-dimensional test functions C∞0

(M) of smooth functions of compact support on spacetime. 
This construction makes use of the fact that for

f ∈ C∞0

(M) we can solve the Klein-Gordon equation with source f. 
The retarded and advanced solutions are de ined by
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(2 − m2)Rf = f,(2 − m2)Af = f, (3.10) 

Where Rf = 0 outside of the future of the support of f, and 
Af = 0 outside of the past of the support. Then (A − R)f = Ef is a 
solution to the homogeneous wave equation, which registers 
compactly on any Cauchy surface because the support of f is 
compact. Hence we ind that E is a map of C∞ 0 (M) → V. One 
can show (Wald 1995) that this map is surjective, and that its 
kernel is exactly the image of (2−m2 ). Hence we ind

V ∼= C∞c(M)/(2 − m2)C∞c(M).

The interpretation of a reference frame is that it represents 
a collection of ictitious observers that can work together in 
order to establish non-local measurements. A reference frame 
is called synchronizable if functions t and h on M exist such 
that X = −h∇t, and we call it proper time synchronizable if we 
can choose h = 1. These reference frames allow the different 
observers in the frame to synchronize their clocks 4 and de ine 
surfaces of constant time t. This affects a spacetime split: The 
observers agree that the surfaces of constant t form space and 
global time is equal to each observer's proper time. This is the 
best-case scenario, but we are not guaranteed the existence 
of a unique global synchronizable reference frame containing 
γ. Clearly, the concept of a reference frame is a global notion: 
Vector ields are de ined on the whole of spacetime and are 
sensitive to the global properties of the manifold. As such it 
would be too optimistic to expect an observer to induce a 
unique reference frame that he is one of the observers of. In 
general, there will be many different reference frames that 
extrapolate a single observer γ. To restrict this choice, we can 
ask for some criterion to be satis ied which implements the 
idea that the reference frame ’behaves like the observer γ’. For 
example, since will be looking at geodesic observers it would 
be natural to ask for a reference frame which is geodesic 5. 
However, because gravity is attractive, geodesics are likely to 
cross and such a reference frame will not exist in any realistic 
model. The problem is that, while there are many extensions 
of a single observer to a reference frame, there are in general 
no global extensions with nice properties. We can, however, 
locally de ine reference frames around the worldline of 
the observer. While this does not yield the full notion of a 
reference frame, we would argue that this notion is unphysical. 
A realistic observer cannot measure anything that has a large 
spatial separation from his own worldline. Cooperation 
between multiple observers can increase the range of 
measurements that can be performed, but this would always 
require different observers to communicate to compare their 

indings. This can only be done meaningfully if the different 
observers can synchronize their clocks since then they can 
compare their measurements with an agreement to when 
they were made. There are schemes for synchronizing clocks 
between observers, such as the radar method. These methods 
are, however, not globally applicable we therefore take the 
viewpoint that a realistic reference frame should always be 
lo-cally de ined on some open set inside M which contains 
part of γ. This corresponds to the idea that the observer is 
able to operate some spatially extended apparatus to perform 
measurements away from the exact position of his worldline 
and that he could communicate with other observers who are 
close. Finally in this paper theoretical study of different types 
and generations of spacetime curved in Mikokshi and other 
Hilbert space and multiple dimensional vectors spacetime 
curved.

References
1. Geroch R. Domain of dependence. Journal of Mathematical Physics. 

1970; 11: 437–449. 

2. Hawking SW, Ellis GFR. The Large Scale Structure of Space–Time. 
Cambridge: Cambridge University Press. 1973; 1. doi: 10.1017/
CBO9780511524646.

3. Fulling SA. Remarks on positive frequency and Hamiltonians in 
expanding universes. General Relativity and Gravitation. 1979; 807–
824. doi: 10.1007/BF00756661.

4. Fulling SA, Narcowich FJ, Wald RM. Singularity structure of the two-
point function in quantum ield theory in curved spacetime II. Annals of 
Physics. 136: 243-272.

5. Fulling SA. Nonuniqueness of canonical ield quantization in rieman- 
nian space-time. Physical Review D. 1973; 7:2850–2862. doi:10.1103/
PhysRevD.7.2850. 

6. Fulling SA, Sweeny M, Wald RM. Singularity struc- ture of the two-point 
function in quantum ield theory in curved spacetime. Communications 
in Mathematical Physics. 1978; 63: 257-264. doi: 1007/BF01196934. 
URL: http://link.springer.com/10.1007/BF01196934.

7. Stefan H, Wald RM. Quantum ields in curved spacetime. General 
Relativity and Gravitation: A Centennial Perspective. 2015; 513–552. 
doi: 10.1017/CBO9781139583961.015. arXiv: 1401.2026.

8. Wolfgang J, Schrohe E. Adiabatic vacuum states on general space-time 
manifolds: De inition, construction, and physical properties. An- nales 
Henri Poincare. 2002; 3:1113-1182. doi: 10.1007/s000230200001. 
arXiv: math-ph/0109010 [math-ph].

9. Kay BS. Linear spin-zero quantum ields in external gravitational and 
scalar ields. Communications in Mathematical Physics. 1980; 71: 29-
46. doi:10.1007/BF01230084. http://link.springer.com/10. 1007/
BF01230084.

10. Kay BS. The double-wedge algebra for quantum ields on Schwarzschild 
and Minkowski spacetimes. Communications in Mathematical Physics. 
1985; 100: 57–81.


