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Introduction
The non-force magnetic ϐields were ϐirst predicted by 

Chandrasekhar in 1956 in his well-known published work [1]. 
Since then there have appeared a large number of theoretical 
studies [5,6,15,17] with the research into various aspects 
of physical manifestations of non-force magnetic ϐields. 
However by now their existence in the technical physics 
and in laboratory experiments has not been experimentally 
conϐirmed [30]. Nevertheless the indistinct presence on the 
Earth of such ϐields was, in a sense, discovered in the natural 
electromagnetic ϐield much earlier.

In 1902 at the Congress of Physicists, Professor Van 
Vleuten from the Holland University presented a paper 
informing about non-potential magnetic ϐields of the calm 
solar-daily variations of the Earth’s magnetism in the Earth’s 
atmosphere, where electric current is practically absent. 
The result obtained clearly contradicted the ϐirst Maxwell’s 
equation  × Η = j, j = 0,  × Η = 0. Η - Potentially. That was why 
Van Vleuten has called such a magnetic ϐield “non-potential”. 
Her result was published ϐifteen years later in the Proceedings 
of the Physical Faculty of the Amsterdam University [2].

Van Vleutens result on the magnetic non-potential ϐield in 
the Earth’s atmosphere in the calm solar-daily variations of the 
Earth’s magnetism was strongly supported in the monograph 
by Benkova [3], which contains the results of processing and 
interpretation of the calm solar-daily variations observed in 
the First International Geophysical Year (1933).

The same result concerning the non-potential magnetic 
ϐields can be found in the monograph by Aksenov [4]. These 
ϐields were called the toroidal magnetic ϐields obtained after 
processing and interpretation of the data from the Second 
International Geophysical Year (1957/1958).

Some difference in the terms of the discovered magnetic 
ϐields of the above-mentioned authors suggests an exact 
deϐinition as well as an explanation of their physical nature, 
and also the whys and wherefores of their place in Physics 
and in the long-known Maxwell’s equations. The latter are 
considered to be absolutely correct not only in terms of the 
Earth, but also in the electro-dynamics of space. However 

Parker [5] indicates to the fact that applying Maxwell’s 
equations to the space magnetic ϐields has not been proved.

Non-forceful magnetic ϐields have no Lorentz force in the 
sources. Formally, this circumstance can be expressed in the 
following manner: FL = [j×B] = 0.

where FL is the Lorentz force, j is the current density, B is 
the magnetic induction. It is well known that in the technical 
physics in any experiments on the Earth with a magnetic ϐield, 
the Lorentz force in its sources always exceeds zero.

FL = [j×B] > 0 

An important feature of a non-force magnetic ϐield, 
according to [1,5-7], is its non-potentiality. Taking this 
property into account, the above-mentioned non-potential 
magnetic ϐields and toroidal magnetic ϐields should be referred 
to as the non-force magnetic ϐields. In order to be certain in 
it, it is necessary to give precise deϐinitions to the force and 
the non-force electromagnetic ϐields, to ϐind their position in 
Maxwell’s equations, to pre-determine the applicability limits 
of Maxwell’s equations keeping in mind the above-mentioned 
Parker’s “slip of the tongue”. 

On the applicability limits of Maxwell’s equations

The question about the applicability limits of Maxwell’s 
equations in the Earth’s electrodynamics does not practically 
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arise. However this is the long-standing question since Larmor’s work [8] that was published in 1919, in which much attention 
is given to the fact that the motion of a charged ϐluid with the velocity V in the magnetic ϐield generates a supplementary electric 
ϐield by the formula, 

E´ = E + [V×B]                             (1)

Substituting formula (1) into the second Maxwell’s equation  [ ]
t


   


B E V B and having transformed the ϐirst Maxwell’s 

equation by multiplying from the right and left by the magnetic permeability μ, for example ×B = μσE, it appears possible to 
obtain a new equation by integrating the ϐirst and second Maxwell’s equations having excluded the electric ϐield:

1 [ ]
t 


   


B B V B                              (2)

Here σ is the conductivity. Equation (2) is generally called the equation of induction with a dynamo term. This equation 
makes possible to specify the applicability limits of Maxwell’s equations based on the similarity criterion, i.e. the Reynolds 
number mRe L V . Here L is the characteristic size indicating to the location of the interface between laminar and turbulence 
in the magnetic ϐield.

In the Earth’s conditions the similarity criterion 1mRe   is close to unity due to the constraints of a characteristic size of 
technical devices and laboratory experiments. This makes possible to reject the second term in (2) and to obtain the equation 
for induction:

1
t 


 


B B                                          (3)

Equation (3) is absolutely correct and reϐlects the electro-dynamics on the Earth and completely obeys Maxwell’s equations. 
This gave rise to the myth about the comprehensive scope of any electromagnetic phenomena by means of Maxwell’s 
electrodynamics. This is true in the technical electrodynamics on the Earth.

In the electrodynamics of space, the similarity criterion is ϐixed at the level 1710mRe   units [5], therefore equation (2) can 
be rewritten as follows:

[ ]
t


  


B V B                             (4)

Equation (4) and the similarity criterion mRe for space assume the presence of turbulence in the magnetic ϐield. This has 
allowed Parker to advocate that the magnetic ϐield in space is generated at the account of turbulence and convection with a 
non-uniform rotation of the space objects and is supported by the mutual generation of toroidal and poloidal magnetic ϐields [5].

Natural electromagnetic ϐields on the Earth: the main geomagnetic ϐield (MGF) and its different variations (the variable 
part of Sq variations, for example) are described by the similarity criterion at the level 3 510 10mRe    units [5,7]. Hence, the 
terms in the right-hand side must not be ruled out. This deduces the natural electromagnetic ϐields (except for the magnetic 
prospecting) from the limits of standard Maxwell’s equations because in addition to diffusion and induction there may appear 
hydro magnetic effects caused by a possible toroidal part of electromagnetic ϐields. As will be shown below, this is observed in 
the Main geomagnetic ϐield and its variations.

Determination of toroidal and poloidal electromagnetic fi elds

Determination of toroidal and poloidal electromagnetic ϐields originates from zero divergence of the magnetic ϐield 0 H
( 0 B ) that is valid everywhere due to the absence of magnetic charges. Following [9], the ϐirst step to determining the 
ϐields in question is the introduction of the vector A and the scalar Q  potentials outside the source with the help of the chain of 
equalities:

0,    ,    ( ) ( )Q Q     H H A A r r                              (5)

Here ,Q CA .

Then the toroidal orthogonal decomposition of the vector A makes possible to uniquely introduce the toroidal magnetic ϐield 
HT using a simple relation [9]:

( )T Q H r                                                 (6)

as well as the poloidal magnetic ϐield HP using a double rotor:
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( )P Q H r .                              (7)

These deϐinitions make possible outside the source in unprimed coordinates (the primed coordinates belong to the source) 
to obtain the basic relation between the above-mentioned ϐields:

T P H H .                               (8)

An apparent non-coincidence of the dimension in (8) is explained by the fact that the magnetic ϐields HT and HP as a scalar 
function Q  are determined outside the source. Therefore these ϐields have dimensional constants characterizing the sources 
being part in HT, HP and the scalar function Q  and calculated in primed coordinates. 

The differential operators in (5-8) do not change the dimension of these constants being speciϐied in non-primed coordinates.

 On the other hand, if the rotor of equation (7) is calculated, it will appear possible to obtain the second relation that is 
symmetric to (8). Actually:

( ) ( ) ,P TQ Q       H r r H                         (9)

where:

1/2

                                   t=0

( )                         t>0.

Q
Q Q

i Q





    


    

Here γ is the diffusion velocity of the magnetic ϐield, η is the magnetic viscosity, 1/2( )i  is the wave parameter of the 
medium, in which the magnetic ϐield is propagating,   is the conductivity, μ is the magnetic permeability, ω is the circular 
frequency. With allowance for formulas (8) and (9), a pair of mutually generating magnetic ϐields (variable and constant) will 
be of the form:

×ΗΤ = ΗP,    ×ΗP =  χΗΤ                        (10)

provided the mutual generation is possible only in a conducting medium when the parameter χ ≠ 0 and the ϐields in question 
attain the required strengths. Relations (10) are fundamental, as they have a number of fundamental applications, which will 
be mentioned below.

The relationship HT, HP and the functionQ  with the scalar potential and vector potential components in spherical coordinates 
is given by the formulas [10]:

1 1( ) ,PH Qr rA
r r r r 
  

 
  

1 1 1( )PH Qr rA
r r sin r r  
  

 
  

                     

(11)
         

2

1 ( ) 1 ( ) 1 1 ,Pr
Qr Qr AH sin A

r sin sin rsin sin



         
        

                 

      
     

 
1 1( ) ,T rH Qr A

rsin rsin    
 

 
 

1 1( ) ,T rH Qr A
r r  
 

   
 

  

Formulas (11) prove the possibility of describing toroidal and poloidal magnetic ϐields both with the help of one scalar function 
Q  and with the three components of the vector potential A. This possibility will be used when explaining the experiments with 
non-force electromagnetic ϐields.

To deϐine the toroidal and poloidal electric ϐields at t > 0, where t is the time, it is necessary to make use of the standard 
Maxwell’s equations with Larmor’s correction:

,     ,     ( , ) 0.
t t

  
           

 
E BH E E H E                       (12)

Here σ, μ, ω are the constants, E´is borrowed from (1), i     . In addition, it is needed to make use of the vector 
potential decomposition from (5):
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,     i     H A E A                           (13)

In formula (13) it is also required to apply the Lorentz calibration for the vector potential:

1


 


A                           (14)

In this case it appears possible to obtain the general formula:
1 1( ) ( ) ( ) ( )i Q i Q Q Q 
 

        
 

E r r r r                        (15)

The latter term in (15) is identically equal to zero. It is possible to introduce into the rest terms the toroidal and poloidal 
electric ϐields in the following manner [10]:

1( ),     ( ) ( )T Pi Q i Q Q 


       


E r E r r                        (16)

In the second formula in (16), the inductive term ( )i Q r  is not typical of the poloidal potential ϐield PE  and is compensated 
according to the following theorem.

Theorem 1

The induction term ( )i Q r  is compensated by the term 1 ( )Q





r  provided that ( ) 0Q r

Proof.

For the proof, let us partition the space into two parts with respect to the regular boundary S. The inner part is represented 
by the function ( , , , )iQ r t   and its decomposition:

1/2
1

( , , , ) (æ ) ( , )i
n n

n

rQ r t K S
R

   





 .                          (17)

Here 1/2 (æ )n
rK
R  is the added Bessel function of the semi-index 

2 2 2

0
æ ,     ( , ) (cos ) ,    ( , )

n
m m im

n n n n
m

i R R S A P e S C        



    , R is the radius of the domain separated by the 

regular boundary S, r is the current radius.

The external part is represented by the function ( , , , )eQ r t   :

1/2
1

( , , , ) (æ ) ( , )e
n n

n

rQ r t I S
R

   





 .                         (18)

Here and in (17) m
nA  are the complex constants, (cos )m

nP   are the spherical functions. The factor eiωt in the right and left 
hand sides of formulas (17) and (18) is omitted. The arguments of the Bessel functions are separated from zero and inϐinity.

For the proof we will need the ϐirst and second derivatives of the Bessel functions being part in (17) and (18). In order not to 
complicate the presentation with formulas, we are giving the proof only for the function ( , , , )iQ r t  :

1/ 2 1/ 2 1/ 2
1 1

2 2

1/ 2 1/ 2 1/ 22 2 2
1 1

æ æ æ 1 / 2 æ( , ) ( ) ( , ) ( ) ( ) ,              

æ ( 1 / 2)( 3 / 2) æ æ æ æ( , ) ( ) ( , ) ( ) ( ) ( ) .

i

n n n n n
n n

i

n n n n n
n n

Q r r n rS K S K K
r R R R r R

Q r n n r rS K S K K
r R r R R rR R

   

   

 

  
 

 

  
 

        
         

 

 

                 

(19)

Let us transform the radial component from (16) by omitting the upper prime:

2
2 2

Pr 2 2
1 1 1 æ 4

i i
i i i Q QE i Q r r Q r Qr r

r r r r r


 
    

            

                        (20)

In (19) and (20) the arguments of the function ( , , , )iQ r t   are omitted for reasons of economy. Now we calculate the radial 
component Pr

iE  :
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2
2

Pr 1/ 2 1/ 2 1/ 22 2
1

1/ 2 1/ 2

1 æ ( 1 / 2)( 3 / 2) æ æ æ æ( , )[ æ ( ) ( ) ( )

4æ æ 4( 1 / 2) æ( ) ( )].                                                                       

i
n n n n

n

n n

r n n r rE S rK r K K
R r R R R R

r n rK K
R R r R

 




  


 

  
        


 



                      
(21)

In (21) it is required to reduce similar terms with allowance for 2 2 2æ æ R  . As a result we arrive at:

  2 2
Pr 1/ 2 1/ 2 1/ 2 1/ 2

1

1 æ æ n(n-2)-5/4 æ 3æ æ( , )[ æ ( ) æ ( ) ( ) ( )].i
n n n n n

n

r r r rE S rK rK K K
R R r R R R

 




   


    


                        (22)

It is not difϐicult to notice that the induction term in (22) vanishes. Only the potential part remains there. A similar result is 
valid for Pr

eE . The Theorem has been proved.

Therefore, toroidal and poloidal electric ϐields be deϐined as follows [10]:

1( ),      ( )T Pi Q Q


     


E r E r .                          (23)

The relation of the spherical components of these ϐields to the corresponding components of the vector potential in spherical 
coordinates will be of the form [10]:

2 2
2 2

2 2 2 2
2 2 2 2

1 1 1 1 1 1 1 1( ) , ( ) , ( ) ,

1 1 1 1 1 1 1 1 1 1( ) , ( ) .

T T P r

P r Pr r

E i Qr i A E i Qr i A E r Qr r A
rsin r r r r r r r

E r Qr r A E r Qr r A
rsin r r rsin r r r r r r r r

    



   
      

       

                         
       

   
          

         (24)

According to formulas (24), the toroidal and poloidal electric ϐields outside a source can also be determined with the help of 
one scalar potential Q  or three components of the vector potential A in respective derivatives.

Non-force and force properties of toroidal and poloidal electromagnetic fi elds

The elucidation of the principal properties of the toroidal and poloidal electromagnetic ϐields will be presented based on 
[9,12,13]. To this end, it is required to calculate the Lorentz force of the following pairs of the electromagnetic ϐield HP, ET as well 
as HT, EP:

            
(25)

Formulas (25) reϐlect the Lorentz non-zero force for the ϐirst pair of the force electromagnetic ϐields HP, ET. The Lorentz force 
for the second pair is written down in a similar way:

                       (26)

In formulas (26), the Lorentz force LF is identically equal to zero due to the fact that the vector product of the toroidal magnetic 
ϐield with itself is equal to zero in the context of the coinciding direction. The constants χ and μ do not change their direction, 
E.D.S of induction is also identically equal to zero due to the equality to zero of the rotor of the poloidal electric ϐield because the 
poloidal electric ϐield is a gradient of a certain scalar assigned by divergence of the vector ( )Qr . Moreover, the determination 
of non-force and force modiϐications coincides from the physical standpoint with the determination of modiϐications of the 
magnetic and electric forms from [14]:

1( ),    ( ),    ( ),    ( )MT MT ET ET
P T T PQ i Q Q Q


        H r E r H r E r .                    (27)

As we are able to verify, the appearance in (27) of non-force ϐields is not extraordinary in physics. However it is needed to 
elucidate the kind of sources of these ϐields both on the Earth and in Space.

On the sources of non-force electromagnetic fi elds on the earth and in space

Due to the Reynolds similarity criterion 1mRe   and equation (3), non-force electromagnetic ϐields on the Earth have not 
manifested themselves in the experiment. However many published works deal with their theoretical study [6,15]. Among the 
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publications, of special interest is Kauling’s paper [16]. In it, an important result from the practical standpoint is obtained that 
reduces in our terms to the following: plain and cylindrical symmetries of the electromagnetic ϐield sources on the Earth do 
not bring about the generation of non-force electromagnetic ϐields. Kauling’s result can be supplemented by the following two 
theorems.

Theorem 2

A non-turbulent vector ϐield  × Η = 0 under the condition  H  at ρ = const does not admit generation of the vector 
ϐield ( )T Q H r  if 0,   , 0T P H H H . 

In fact, the helicity H H  in the non-turbulent vector ϐield equals zero because of  × Η = 0, while the helicity of the vector 
ϐield HT by deϐinition is not equal to zero: 0T T T P   H H H H . The absence of coincidence of the helicities due to the inϐluence 
of the recursion symmetry [16] excludes the mutual generation of the vector ϐields HT and HP [6,16].

Theorem 3

In the solenoid vector ϐield 0,       H H P , (Ρ is the vector ϐield), the vector ϐield ( )T Q H r  can be generated if 
0,    , 0,    0T P  H H H P . 

In fact, the helicities of the vector ϐields HT HP do not equal zero. The helicity of the solenoid ϐield Η is not equal to zero 
0 H H  because of  × Η = P. 

The helicity of the vector ϐield ΗΤ is also not equal to zero 0T T H H  because of  × ΗT = HP. The presence of helicities in both 
vector ϐields assists in their mutual generation at the expense of the relations:

,    ( ) ( ) ( )T P P TQ Q Q           H H H r r r H .                    (28)

Here ,   Q Q const     (9).
The physical interpretation of Theorems 2 and 3 consists in the following. A toroidal magnetic ϐield cannot arise (Theorem 2) 

in the presence of magnetic masses as sources of a magnetic ϐield. If both toroidal and poloidal magnetic ϐields are simultaneously 
present, then under certain conditions in the intensities ΗΤ,  P and if the constant χ ≠ 0 is not equal to zero, the mutual generation 
of the above ϐields is possible. Theorem 3 conϐirms Parker’s result [5], concerning the cosmic magnetic ϐields, whose mutual 
generation of ΗΤ,  P  along with the turbulence, convection and non-uniform rotation of cosmic objects occupies a prominent place.

In the technical physics, due to small characteristic sizes of L on the Earth Re 1m  , the generation conditions ΗΤ according 
to Parker cannot be fulϐilled. Therefore the question arises about the sources of the toroidal non-force magnetic ϐield ΗΤ in the 
Earth’s natural electromagnetic ϐield. Keeping in mind Kauling’s “forbidden” theorem [16] one should turn to the spherical 
electric currents, whose full density in spherical layers or on spherical surfaces with its toroidal components can generate ΗΤ .

Theorem 4

The source of the toroidal non-force magnetic ϐield ΗΤ and of the force magnetic ϐield ΗP are the toroidal components of the 
full electric current j ≠ 0. 

In fact, the operator of the full electric current, as is known, is of the form:

( ) j A .                         (29)

Let us map this operator onto the axis of the spherical coordinate system, having ϐixed only toroidal components of the 
current:

2 2
Ï

2 2 2 2 2

2

2 2 2

1 1 1 cossin
sin sin sin

cos 1 1 1 2sin .
sin sin sin

r

A A rA Aj
r r r r r
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r r r r

   


 



      

 
        

   
     

    

   
   

     

              

(30)
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2cos2 ,
sin

r
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r r r r r r r
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If we turn to decomposition (5), it will be possible to express the spherical components of the vector potential via the scalar 
functionQ  as follows:

1 ;    ;    .
sin r

Q QA A A rQ   
 

   
 

                            (31)  

By deϐinition (6), the components of the toroidal magnetic ϐield are of the form:

1 ;    ;    0.
sinT T Tr

Q QH H H   
 

   
 

                               (32)

According to formulas (30), the projections of the equation for the full current on the axis of the spherical coordinate system 
among their terms have the following expressions:

2 2
2 2 2 2 2 2;    
sin sin

r r
T T

A Q A QH H
r r r r r r      

   
    

   
                       (33)

The right-hand sides of expressions (33) with allowance for formulas (32) are just doubled components of the toroidal 
magnetic ϐield referred to a current radius, thus giving them the dimension of the current density.

Thus, the toroidal components of the spherical density of the current always generate toroidal non-force components of 
the toroidal magnetic ϐield. This fact (Theorem 4) is of importance for the domains with low values of the similarity criterion, 
because in such domains for the generation of a non-force toroidal magnetic ϐield there is no need in the turbulence in the 
magnetic ϐield, as well as in the convection of a substance and in the non-uniform rotation of cosmic objects as this takes place 
in [5]. The spherical electric current is sufϐicient because according to Theorem 4 such a current simultaneously generates 
both the poloidal force and the toroidal non-force magnetic ϐields. The attempts to reproduce a non-force magnetic ϐield in 
the laboratory experiment, described in [17], were not a success. It was necessary to rearrange the experiment to creating the 
toroidal spherical current, but not to reproduce the turbulence in the magnetic ϐield. Any attempts to “twist” the force lines of 
the magnetic ϐield in a sophisticated way are only theoretically possible [15], but are unlikely to be reproduced in an experiment 
because of small values of the characteristic size L in the Earth’s conditions according to the similarity criterion Re 1m L V .

Some essential disagreements between Parker’s and Alfven’s concepts [5,18] concerning the primary source of the magnetic 
ϐields in the outer space can be smoothed with the help of Theorem 4 which holds that the toroidal non-force magnetic ϐield can 
be generated by spherical currents even in the absence of the turbulence in magnetic ϐields. Strong toroidal currents are surely 
present on the surface of the stars as well as on the Sun’s surface. Therefore the original occurrence of the non-force magnetic 
ϐield is apparently due to the electric currents. Then at the expense of the induction speed-up of the currents and ϐield there arise 
just the effects considered by Parker and many other researchers before and after his considerations.

Not a simpler situation holds in the electric ϐield. According to deϐinitions (24), the toroidal force electric ϐield is generated 
by the toroidal electric currents according to the formulas:

( )P T T T T       H H H E j ,
1/2

1/2( ) CT
P T T T T T Ti i   



             
H H H H E j j                 (34)

Here: ( )T TH E   в V/m, 
1/2 1/2( 1)

2T T T
ii 

 

                
H H E  в V/m.

In the alternating ϐield, ET is a complex value. An electric ϐield also arises owing to Larmor’s effect [8] when a charged ϐluid is 
moving in the magnetic ϐield. A normal to a regular boundary component of the electric ϐield n rE i Qr i A     according to 
Theorem 1 is compensated by a potential ϐield of charges appearing at regular boundaries. 

The potential poloidal part of the electric ϐield EP from (24) is completely due to electric charges arising at the interface of 
conductors and the electric current or due to the charges arising by other reasons.

Boundary conditions for toroidal non-force and poloidal force electromagnetic fi elds

The boundary conditions at regular boundaries for the magnetic and electric ϐields of the above-discussed types practically 
do not differ from standard boundary conditions for the magnetic and electric ϐields determined and substantiated earlier in 
[14]. At regular boundaries, the behavior of magnetic and electric ϐields satisϐies the following relations:

1 2 1 2 1 2 1 2( ) 0,  ( ) 0, 0,  0,  E
P P r T T T T r Tn r pn pnE 


       


H H H H E E E E                              (35)
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Here: l is the upper part of the regular boundary, 2 is the lower part of the regular boundary,    is the conductivity of the 
upper part of the space above the boundary, σE is the conductivity of the space below the regular boundary.

The behavior of the toroidal non-force and poloidal force ϐields at the regular boundary is associated with applying these 
ϐields to concrete problems arising on the Earth, such as the presence or absence of the toroidal non-force magnetic and the 
poloidal electric ϐields of natural origin in the Earth’s atmosphere, in the Earth’s interior, in the cosmic space [5,6,10].

Generalized electrodynamics equations for toroidal and poloidal electromagnetic fi elds

The electrodynamics of the above-mentioned ϐields is somewhat different from Maxwell’s standard electrodynamics. Here 
we present the equations from the author’s publications [4,7,9,11,12]:

                                (36)

Equations (36) in their form are close to Maxwell’s standard equations, although they have in their structure the effects non-
intrinsic of standard equations. For example, the electric ϐield in its composition contains Larmor’s effect as [ ].   E E V B  The 
magnetic ϐields ΗΤ, ΗP, according to Theorem 4, are excited by toroidal currents. The toroidal magnetic ϐields in a non-current 
domain are non-potential in any medium at the expense of × ΗΤ = ΗP. By the same reason, they are not affected by the skin 
effect. The poloidal electric ϐield is potential 0P E  . Vortices of the toroidal non-force magnetic ϐield generate the force 

magnetic ϐield because of  × ΗΤ = ΗP but not due to the electric current. The induction of the poloidal magnetic ϐield           contains 

hydromagnetic effects due to Larmor’s effect (formula (2)). Vortices of the poloidal magnetic ϐield due to  ΗPΗT =jT in 
addition to induction and diffusion in certain conditions can generate toroidal magnetic ϐields in conducting media. Equations 
(36) allow the mutual generation of magnetic ϐields owing to (10). In the description of experiments, we will demonstrate other 
properties of the toroidal and poloidal electromagnetic ϐields.

Physical modeling of toroidal and poloidal electromagnetic fi elds

The mathematical description of the toroidal non-force and poloidal force ϐields has been presented above using the toroidal 
decomposition of the vector potential (formula (5)). As for the physical modeling, it is proposed in [6] by introducing two 
scalar potentials used separately for the toroidal magnetic ϐield (the function T as a source) and the poloidal magnetic ϐield (the 
function P). At ϐirst glance, such an approach is justiϐied; however, from the mathematical standpoint it involves difϐiculties 
when proving the mutual generation of the toroidal and poloidal magnetic ϐields.

What are the toroidal magnetic ϐields as physical objects? It should be recalled that the toroidal electromagnetic ϐields are 
two-component objects of the form:

1 2 1 2( ; ;0),    ( ; ;0).T T T T T TH H E E H E                           (37)

The toroidal electric currents are also two-component. Their density of the current:

1 2( ; ;0),T T TJ JJ =                           (38)

can take place on 2D surfaces or on uniform conductivity layers: plane, cylindrical, spherical, etc.

In order to physically reliably introduce the toroidal magnetic ϐields into the electromagnetic ϐield theory, it is necessary to 
make use of the empirical deϐinitions of these ϐields [6]. To avoid suspicion in non-coincidence of the dimension of magnetic 
ϐields in their determination in the form ([6]):

( ) ( ).T P T P      H H H r r                             (39)

We should explain what the author [6] meant when determining these ϐields.

Figure 1 presents the projections of electric current components on the vertical and horizontal planes that are within the 
limits of a source. According to ϐigure 1, the toroidal two-component magnetic ϐield ΗΤ is, in fact, determined at the point p(r, θ, 
ϕ) outside the source of the vertical current jT, where r, θ, ϕ are the spherical coordinates as follows:

( )T P T   H r                         (40)

Where T (r, θ, ϕ) is an arbitrary scalar function whose mean at the surface S is equal to zero ( , , ) 0T r    . Its expansion in 
terms of spherical functions is of the form:

, , , ,, , , 0, ( , ) 0, ( , ) 0, ,CT P
P T T T P T P P T T P P T P T P T P Tt

 
                    

BH j j H H E E H H E E D E B H

PB
t



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1 0
( , , ) ( ) (cos )

n
m m im
n n

n m

T r r A P e    


 

  .                              (41)

The complex factors m
nA  have the following physical sense [10]:

( ) ( ) (cos )cosm m
n n n

W

A r J q P m dw       ,                                  (42)

where ( )J q is the complex function of the vertical current density.

The complexity of the current density provides the complexity of the constant factor m
nA  which is needed for the completeness 

of expansion (41). The term containing m  will not be written down in the context of saving room. In formulas (40)-(42), 
only the constant factors have a dimension because they include the current density with a physical value. These factors are 
determined from the magnetic ϐield, therefore their dimension coincides with that of the magnetic ϐield from the left-hand side 
of formula (40). Differentiation in (40) by means of the rotor is done by the non-dashed coordinates of the point p(r, θ, ϕ), hence 
the differentiation does not distort the dimension of the constant factors m

nA .

The poloidal magnetic ϐield is introduced using the double rotor because it is three-component (the current ( )J q  is plane), 
and the differentiation is also done at the points p(r, θ, ϕ):

( )P P P P    H r .                            (43)

Here:

1 0
( , , ) ( ) (cos )

n
m m im

n n n
n m

P r r B P e    




 

   ,                         (44)

where ( )J q  is the complex plane current, and

( ) ( ) (cos )cosm m
n n n

W

B r J q P m dw       
.                         (45)

The term containing sin m  is not written down here. The differentiation in the double rotor in (43) is also done at the 
points p(r, θ, ϕ) and does not change the dimension of the constants m

nB . Their dimension coincides with the dimension of ΗP as 
they are determined from this ϐield. The double or triple application of the rotor to expressions (40) or (41) does not change the 
dimension of the sources that are part of the constants m

nA  and m
nB  because this application is done by non-dashed coordinates.

The revealed physical essence of toroidal and poloidal magnetic ϐields empirically introduced in [6] at the points outside the 
source completely conϐirms the author’s conclusion [6] except that expression (46) generates a poloidal ϐield from the source 
that is a part of the function T (r, θ, ϕ) but not of the function p(r, θ, ϕ).

( )P T P P PT        H r H .                                (46)

However the source of the function T (r, θ, ϕ) is the vertical current (Figure 1), which according to (40), generates only a two-
component toroidal magnetic ϐield. This remark should be taken into consideration when determining the toroidal and poloidal 
magnetic ϐields with the help of one scalar function, containing according to deϐinition (38), only the toroidal current source. 

In the above-said as well as in his earlier studies, the author offers to make use of an orthogonal decomposition of the vector 
potential of the form:

0,    ,    ( ) ( ),Q Q        H A H A r r                           (47)

j

j

q
p

Figure 1: Location of sources.
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which characterizes only toroidal currents.

Here: H is the magnetic ϐield, A is the vector potential, Q  is the scalar function of three variables. In this case, the toroidal 
magnetic ϐield is determined as follows:

( ).T Q  H r                              (48)

The poloidal magnetic ϐield is determined in a similar manner.

( ).P Q  H r                            (49)

Hence, the basic relations for a two-module magnetic ϐield will look like: 

,    ( ) ( ) ,T P P TQ Q           H H H r r H                       (50)

where:

1/2

             0,

( )      0.

Q t
Q Q

i t





    
 

                         (51)

Here: γ is the diffusion rate of the ϐield, η is the magnetic viscosity, 1/2( )i  is the wave parameter of the medium, where a 
variable magnetic ϐield propagates, σ is the conductivity of the medium, μ is the magnetic permeability of the medium, ω is the 
angular velocity of the variable ϐield.

This approach, as was shown above, results in the formula for the self-generation of toroidal and poloidal electromagnetic 
ϐields (10). 

Generalization of the fundamental theorem of uniqueness of the Helmholtz vector fi eld decomposition to toroidal and 
poloidal electromagnetic fi elds

The generalization of the well-known Helmholtz theorem of uniqueness [19] to the non-force and the force magnetic ϐields, 
HT and ΗP respectively, is because of the fact that the non-force toroidal magnetic ϐields at a regular boundary are two-component 
(formula (32)). The all-important factor is the absence in them of a normal component at regular boundaries, surrounding the 
regions with a magnetic ϐield. A well-known statement of the Helmholtz problem is considered in [19] in the following way: let 
V be a ϐinite open spatial domain, restricted by the regular surface S, whose positive normal is uniquely deϐined at each point of 
the surface. In this case the following theorems are valid. 

Theorem 5. (Theorem of decomposition)

If the divergence and rotor of the ϐield F(r) are determined at each point r  of the domain V, then everywhere in V the 
function F(r)can be presented as sum of the divergent-free ϐield F1(r) and the solenoidal ϐield F2(r). 

where:   × F1(r) = 0,  ⋅ F2(r) = 0 

Theorem 6. (Theorem of uniqueness)

The function F(r) is uniquely deϐined with a supplementary condition of specifying the normal component ( )r dsF
ds

 of the 
function F(r) at each point of the surface S.

Effective tracking of the function F(r) with the above data reduces to solving differential partial derivative equations with 
certain boundary conditions.

As opposed to the above-formulated statement of the problem, we are interested only in the solenoidal part of the magnetic 
ϐield, whose tangential to the surface components S contain the toroidal part. On the other hand, the domain V will be considered 
to be a sphere with a regular boundary containing an exterior continuous normal given at each point. In the case in question, 
Theorem 6 can be re-formulated to the considered problem, and the proof of this new theorem will be sought for without 
solving the corresponding differential equations and proving new boundary conditions in addition to the existence of the 
normal component HPN(r) at each point of the surface S. The proof of this theorem was ϐirst presented in [24].

Theorem 7

The solenoidal vector ϐield H in the spherical domain V (in the sphere with the surface S and of radius R) is uniquely 
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reconstructed by the following expression: 

( ) ( )T P Q Q    H H H r r                            (52)

If the normal component HN (r) on S V is known, and the function ( , , ) ,Q r C    whose mean 0Q   on S, as well as H, HT, HP 
≠ 0 and × ΗT = HP everywhere. 

Here the mean: 
2

0
0

sin 0.Q Q d d



    

In fact, if the vector ϐield H corresponds to (52), then for proving the uniqueness of decomposition (52) it is needed to 
express the function Q via the initial normal component of the vector ϐield ΗP or × ΗT

For example,

   2 2( ) ( ) ( ) ( ) [ 3 ] 2P Q Q Q Q Q Q Q                 r H r r r r r r r r

= – 2 2 2 2 2( ) ( ) ,Qr Q Q Q r Q r DQ
r r
 

           
 

r r r ( ) ( ) .T Q DQ    r H r r                   (53)

Here D is the direct operator (the Beltrami operator), deϐined in (53), namely: 
2

2 2
1 1sin ,

sin sin
D 

    
  

 
  

                        (54)

That is a part of the Laplace operator without radial derivatives. From (53) it follows that
1 1( ) ( )P TQ D D      r H r H ,                         (55)

Where D is the inverse operator to the operator D, which is subject to determination. With allowance for formula (53), it is 
possible to show that if there are employed two arbitrary scalar functions of the form ( ) ( ) ( )P Q A r r r , then because of the 
fact that the vector ϐield HT does not contain a normal component towards the surface of the sphere S and cannot be uniquely 
deϐined - according to the above-presented Helmholtz theorem – it is required to make use of the condition of Theorem 7  × ΗT 

= HP. In this case the direct operators ( )PDQ  r H  and

( )TDP  r H  will bring about the following coinciding inverse 1( )PD r H  and

1 1( ) ( )T PD D     r H r H . This means that P Q  and in the expression for  A(r) it is sufϐicient, without loss of generality, 
to use one arbitrary scalar function, that is, the functionQ . So, to ϐindQ , one must deϐine the forward D and inverse D-1 operators. 
The inverse operator D-1 is determined as follows. Let ψ(r, θ, ϕ) and f(r, θ, ϕ) be arbitrary scalar functions, related by:

( , , ) ( , , )D r f r                               (56)

In this case, the functions ψ(r, θ, ϕ) and f(r, θ, ϕ) whose mean on S equals zero: 0,    0f   . Let us introduce the 
following notation [19, p. 675, paragraph (b)]:

0
( , ) ( )

n
m m im

n n n
m

S A P cos e   


                         (57)

where (cos )m
nP   are the spherical functions, m

nA are the complex constants ( , )m
nS C   . Let us now present the auxiliary 

functions , f by their standard extensions in terms of the spherical functions [19]: 

1 1 0 1
( ) ( , ) ( ) ( ) ;   ( ) ( , ).

n
m m im m

n n n n n n n
n n m n

r S r A P cos e f f r S       
  

   

                               (58)

The summation over n begins with unit, a free term being absent in accord with the imposed condition of zero means for the 
functions , ,Q f  on the sphere S. In this case, the functions ( )n r  and ( )nf r  are proportional to r R for rn, while for r R – to 

1
1
nr   respectively.

Let us apply the direct operator D to the function Sn(θ,ϕ), using the result of (53):

( , ) ( 1) ( , )n nDS n n S      .                            (59)

In fact, with allowance for (53) and the conditions imposed on the functions ( )n r  and ( )nf r  (58), it is possible to write down:
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2
2

2
2( ( , ) ( , )) ( , );n n n

n n nr r S r S Dr S
r r r

      
  

 
 From here = ( 1) ( , ) ( , ),n nn n S DS     

2
2

2 1 1 1
1 2 1 1( ( , ) ( , )) ( , );n n nn n nr S S D S

r r r r r r
       

 
  

 

 

( 1) ( , ) ( , ),n nn n S DS     

Such a presentation seems to be the most convenient because according to (53) in the operator D the functions are 
differentiated only with respect to the angular coordinates. Now we apply the operator D to (55) and taking into account the 
above-obtained extensions of the functions ψ and f, obtain:

1 1
( ) ( 1) ( , ) ( ) ( , ).n n n n

n n

D r n n S f r S     
 

 

    
                  

                  (60)

The functions Sn(θ, ϕ) and ( , )nS    differ only in complex coefϐicients. Let us equate the general terms in (60), keeping in 
mind the absolute and uniform convergence of a series of extension of the functions ψ, f in the spherical functions [19,20]. Let 
us now divide the right- and the left-hand sides by the factor n(n + 1). As a result we arrive at:

( , )( ) ( , ) ( ) .
( 1)
n

n n n
Sr S f r
n n

     


                         (61)

Having summed up all the harmonics in (60), we come to:

1

1

( , )( ) .
( 1)
n

n
n

SD f f r
n n

 






   
                        (62)

Formula (62) represents the deϐinition of the inverse operator D. In our opinion, the operator in (62) is more constructive 
for the problem in question than the integral inverse operator for the Beltrami operator containing the Green function [20]. Let 
us apply it to formulas (55):  

 '

1 1

( , ) ( , )( ) ( ) ( ) .
( 1) ( 1)
n n

Prn T rn
n n

S SQ rH r r H r
n n n n

    

 

    
  

                        
(63)

If we take into consideration the fact that for r = R we have Hprn(R) = HNn(R),

''

1
( ) ( ) ( , ),N Nn n

n

H r H R S  




                             (64)

( ) ,T PQ   H r H
=

then 

1

( , )( )
( 1)
n

Nn
n

SQ RH R
n n

 



 



                         (65)

where R is the radius of the sphere.

Thus, formula (65) deϐines the functionQ on the surface of the sphere. At any of its points inside and outside the sphere, 
the functionQ is known to depend on the coordinate r. Hence, Theorem 7 extends the validity of the Helmholtz theorem by 
including into a unique deϐinition on the surface of the sphere not only a poloidal magnetic ϐield but also a toroidal magnetic 
ϐield associated with the poloidal relation from Theorem 7. In order to reconstruct the whole ϐield on the surface S, for Theorem 
7 it is required to determine one scalar function on this surface. The toroidal magnetic ϐield is not potential everywhere where, 
according to deϐinition (6), it is observed. Nevertheless, Theorem 7 allows the reconstruction of the toroidal magnetic ϐield on 
the surface of the sphere as well. This circumstance is of importance for the interpretation of natural electromagnetic ϐields 
observed on the Earth [10].

The Coulomb and the Lorentz calibration conditions for the vector potential presented by a scalar function 

One among important problems arising in applications is the problem of the validity of the Coulomb 0 A  or the Lorentz 
 A  calibration when presenting the vector potential by the toroidal orthogonal extension (5). The orthogonality of the 

vector potential extension from (5) is evident. It is trivially veriϐied in the spherical coordinates: 

   0,0, ( ) ( ), ( ),0 0Qr Qr Qr       .                                        (66)



Non-force electromagnetic fi elds

https://www.heighpubs.org/jpra 032https://doi.org/10.29328/journal.ijpra.1001021

Nevertheless, it is still needed to verify the divergence of the vector A in its presentation from (5). This question can be 
answered by Theorem 8 that was proved in [24].

Theorem 8

The Coulomb 0 A  or the Lorentz  A  calibration conditions for the auxiliary vector ϐield A are uniquely fulϐilled, if:

3( , , ) ( , ) /Q r Q r    .                                          (67)

In fact, from formula (52) follows.

( ) ( )Q Q   A r r .                            (68)

Let us calculate the divergence from the vector ϐield (68):

( ) ( )Q Q       A r r .                              (69)

In equality (69), the second term by deϐinition equals zero for the rotor divergence. The ϐirst term is also equal to zero 
because of condition (67):

3 3
3 3( ) ( , ) ( , ) 0Q Q r Q Q Q
r r

           r r                            (70)

In the third term, two versions are considered:

0





  


                                  (71)

where: σ = const.

From formulas (68)-(71) follow two above-mentioned versions of calibrations of the auxiliary vector ϐield A: the Coulomb 
calibration 0 A  or the Lorentz calibration  A  . The theorem has been proved.

Condition (67) from Theorem (8) has a univalent physical essence, which is in that the magnetic ϐields experimentally 
decrease as 1/r3. According to the experiment conducted, condition (67) provides a decrease in the non-force magnetic ϐield ΗΤ 
as well as a decrease in the force magnetic ϐield ΗP.

Generalization of the Gauss and the Schmidt theorems to toroidal and poloidal magnetic fi elds

The electrodynamics on the Earth dates back to the observations of the magnetic ϐield about ϐive centuries ago in China, 
when a “magnetic needle” was invented that indicates to the direction and preserves this direction under the action of the 
magnetic ϐield as it is, whose existence was just a guess. Far more later such a behavior of the “magnetic needle” was employed 
in navigation [26,27].

The research into the main geomagnetic ϐield (MGF) started in the ϐirst half of the 19th century after publishing the “hitch” 
studies by Gauss in 1839-1840 [21,22,28]. For the mathematical description of the natural magnetic ϐield, Gauss has offered to 
use a new (for that time) mathematical object, i.e., a magnetic potential and its decomposition with respect to the sphere. This 
has formed the basis of the methods for studying the main magnetic ϐield thus formulating principles and approaches to the 
investigation of the natural magnetic ϐield.

Later the author referred the above works to the static theory of knowledge, to be expressed by: 

 × Η = 0, Η = ϕ, ϕ = 0                         (72)

At that time, there were no Maxwell’s works on equations of electrodynamics, which appeared only in 1868-1869. Therefore, 
the question about the nature of the observed magnetic ϐield, i.e. its main property of potentiality, did not arise.

However, in the very beginning of the 20th century, in 1902 to be exact, Van Vleuten, a physicist from Holland, [28] paid her 
attention to the fact that the quiet solar-daily variations of the Earth’s magnetism occupy an essential non-potential part in the 
Earth’s atmosphere. This casted some doubt upon the conventional methodology of studying the main geomagnetic ϐield (MGF) 
as a potential object in the Earth’s atmosphere. Although due to the absence of the electric current in the non-conducting Earth’s 
atmosphere, the ϐirst Maxwell’s equation  ×   = j has surely proved the validity of the potential approach for j = 0,  × Η = 0. The 
above methodological principle (static paradigm) is generally accepted even in spite of Benkova’s conϐirmation of the existence 
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of a non-potential part in the quiet solar-daily variations of the Earth’s magnetism that she has obtained based on the data from 
the First International Geophysical Year, 1933 [3].

In the very beginning of the 80-s of the 20th century, Chetaev carried out the experiments in the Earth’s atmosphere with 
a vertical component of the electric ϐield of short-period variations, which have revealed a sufϐiciently high stress of this 
component in the air (1970, [29]). This also contradicted the potentiality principle of variations in the air.

If one attempts to theoretically substantiate the above-considered effects in the Earth’s atmosphere, this will be impossible 
to implement in the potential paradigm ϐixed in the Maxwell’s equations. The magnetic ϐield is necessarily potential for j = 0,  
× Η = 0. The above-described experiments suggest changing this paradigm along with the methodology and approaches to the 
research into the main geomagnetic ϐield and its variations.

The sources of the new paradigm, which is stationary and uses the formulas: 

20,    ,    ,    for =0,   ,    for 0t t         H H A A j A A j                            (73)

can be found in published works on space electrodynamics by Alfven, Parker [5], [18] and in other related works.

The most important discovery is a theoretical proof of a possible existence of the non-force toroidal magnetic ϐields, whose 
properties, as was shown above, differ from those ϐixed in the ϐirst Maxwell’s equation. Changing the potential property for a 
more general solenoidal one, originating from the equation: 0 H , makes possible to introduce the natural geomagnetism 
into the new paradigm, which is stationary, and to replace the existing methodology of studying the MGF by a more general one. 
The substantiation of the new paradigm is based on a number of theorems published in mathematical, physical and geophysical 
journals [10,12,24,31].

The new approach, in our opinion, must be based on the conviction that the Earth is just the same cosmic object as all the other 
planets and stars surrounding it. Its magnetic ϐield in its origin cannot strongly differ from the existing ways of generation of the 
cosmic bodies magnetic ϐields. This idea is repeatedly emphasized by Parker [5]. Moreover, the principle of dynamo excitation 
of a magnetic ϐield is sometimes transferred to the Earth’s conditions, although by now there has been no its experimental 
conϐirmation in the Earth’s conditions [30].

The experiment on a cosmic object, i.e. the Earth, was carried out three times: two experiments during the International 
Geophysical Years of 1933 and 1957-1958, and the third one – during the world-wide magnetic surveying in 1964-1965.

In this connection, the problem of interpreting the observed ϐields requires the development of a maximally general theory 
of appearance of the electromagnetic ϐields observed on the Earth with allowance for the Earth’s cosmic nature and the above 
effects observed on the Earth’s surface. To this end, there was a need in creating the new electrodynamics, which would originate 
from Maxwell’s equations and as a minimum, equations of the space electrodynamics. Above, such an electrodynamics has been 
created (36).

Based on the conclusions of the new electrodynamics it is necessary to develop an effective theory for interpreting the 
data observed in the course of the international geophysical years of 1933 and 1957/1958 and the world-wide magnetometer 
survey of 1964/1965 with allowance for a possible existence of non-force magnetic ϐields. In this case it is needed to bear up 
against the well-known and well-substantiated Gauss-Schmidt method [21,23], applied to investigation of natural magnetic 
ϐields in the static statement. With this method, a number of problems have been solved by means of extending the magnetic 
potential in terms of the sphere and using experimental data determining in it unknown constants. The coincidence with the 
experiment has simultaneously helped to solve two problems: the existence of a solution and its uniqueness. The problem 
of stability was solved with the help of the method of least squares, developed by Gauss for approximation of observed data. 
Therefore it seems reasonable to use this method as the basis when interpreting the data containing non-force electromagnetic 
ϐields. The method in question, as was noted above, solves the problem of existence, uniqueness and stability of the problem 
solution of reproduction of the electromagnetic ϐield on a sphere by discrete observational data. In addition, the Gauss-Schmidt 
method makes possible to solve rather a complicated problem of detecting the location of sources of the reproduced magnetic 
ϐield. These can be sources inside the sphere and outside it.

Therefore it is necessary to begin the simulation of the magnetic ϐield of sources inside the sphere and outside it with modern 
presentation of the Gauss-Schmidt theory [10].

Let in the sphere W with the boundary ( U )S W W S  there be located magnetic masses with the density ρm. Then equations 
for the potential magnetic ϐield H inside the sphere can be written down in the form:
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0,       H H                            (74)

Formulas (74) generate the following chain of equalities:

,    mV V V      H                        (75)

Here: V is the scalar function of the class C∞.

The solution to the Poisson equation (75) in the sphere will be the integral:

( )
( , )
m

W

pV dw
r p q
                              (76)

where p is the point inside the sphere, q is the point outside the sphere.

The inverse radius in (76) 1/r(p,q) can be presented by the Gauss hypergeometric series [28] or with the help of the Legendre 
spherical functions [20], for example,

1 0

1

1/ ( , ) [ cos cos (cos ) (cos )

                    sin sin (cos ) (cos )] ,

n
m m m

n n n
n m

n
m m m

n n n n

r p q c m m P P

rc m m P P
r

   

   



 



  


 

   r R                       (77)

Where R is radius of the sphere, m
nc  is the number of combinations n with respect to m, ( , , ), ( , , )p r q r       are the 

coordinates of points in the spherical coordinate system, ϐixed at the center of the sphere, (cos )m
nP   are the adjoined Legendre 

functions. 

The summation over n in (77) begins with unity according to the assumption that the mean of the function V∈ C∞ through 
the sphere S is equal to zero:

2

0 0

sin 0V V d d
 

                                    (78)

Substituting (77) into (76) yields: 

1
1 0

1 [cos (cos ) ( ) cos (cos )
n

m m n m
n n m nn

n m W

V m P c p r m P dw
r

    



 

      

sin (cos ) ( ) sin (cos ) ]m m n m
n n m n

W

m P c p r m P dw        
                             (79)

Then, assuming the density of magnetic masses ( , , )m r      to by a complex function of coordinates inside the sphere, the 
integrals in (79) can be denoted by the complex constants m

nA  and m
nB , thus providing the completeness of the decomposition 

of the potential V in terms of the spherical functions: 

( ) cos (cos )m m n m
n n m n

W

A c p r m P dw      

( ) sin (cos )m m n m
n n m n

W

B c p r m P dw      
                       (80)

In this case, extension (79) takes the form:

1
1 0

1 ( cos sin ) (cos )
n

m m m
n n nn

n m

V A m B m P
r

  



 

                          (81)

Let us introduce into (81) the following notation:

2 2,    m n m m n m
n n n nA R g B R h                                    (82)

Extension (81) with allowance for (82) will look like

1

1 0
( ) ( cos sin ) (cos )

n
n m m m

n n n
n m

RV R g m h m P
r

  




 

   .                       (83)
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The potential in (83) on the surface of the sphere for r = R will take the form:

1 0
( cos sin ) (cos )

n
m m m
n n n

n m

V R g m h m P  


 

                          (84)

According to (75), the magnetic ϐield components in the local coordinate system ϐixed on the sphere S, where x is the direction 
opposite to that of the coordinate θ, z is the direction inward the sphere, y is the direction coinciding with that of the coordinate 
ϕ, with allowance for (75) and (83) can be calculated:

1 0

(cos )( cos sin )
mn

i m m n
x n n

n m

PH g m h m  




 


  

 ,

1 0

(cos )( sin cos )
sin

mn
i m m n
y n n

n m

mPH g m h m  




 

 
,
               (85)

1 0
( cos sin )( 1) (cos )

n
i m m m
z n n n

n m

H g m h m n P  


 

  

Formulas (84) have conceptually completed the result, obtained in the Gauss theorem [28] about the extension (reconstruction) 
of the magnetic potential using the data on the sphere S. With the magnetic ϐield components (85) as an addition to the result 
obtained by Gauss it is possible to reconstruct (decompose) the potential magnetic ϐield on the sphere S by means of one scalar 
function V.

It is easy to note that formulas (85) also correspond to the Helmholtz theorem of uniqueness [19]. According to (85) for 
reconstructing the whole magnetic ϐield it is sufϐicient to have on the surface S the regular (or sparse in approximation theory) 
data on the vertical component of the magnetic ϐield HZ. With these data, it is possible to reconstruct the coefϐicients m

ng  and 
m
nh  that will be sufϐicient for reconstructing all the three components of the magnetic ϐield from (85).

Much later the Gauss theorem was supplemented by Schmidt [23] under the assumption that magnetic masses take place 
also outside the sphere. In this case, it is necessary to decompose the inverse radius from (77) in terms of the following functions:

1 0

1

1 / ( , ) [ cos cos (cos ) (cos )

                    sin sin (cos ) (cos )]

n
m m m
n n n

n m
n

m m m
n n n n

r p q c m m P P
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   

   



 



  

 


    

r R

                    
(86)

Substituting (86) into integral (76) and bearing in mind that the masses outside the sphere in the volumeW with the complex 
density ( , , )m r   , obtain: 

1
1 0

1[cos (cos ) ( )cos (cos )
n

n m m m
n n m nn

n m W

V r m P c q m P dw
r

    



 

   
  

1
1sin (cos ) ( )sin (cos ) ]m m m

n n m nn
W

m P c q m P dw
r

    
  


                       (87)

In (87), we introduce the notation:

1
( ) cos (cos )

m
m mn m
n nn

W

c qC m P dw
r
  

  
 1

( ) sin (cos )
m

m mn m
n nn

W

c qD m P dw
r
  

  
 .             (88)

Then, once again, we denote:

( 1) ( 1),      m n m m n m
n n n nc R C d R D                                             (89)

and obtain the expressions for the magnetic potential of the masses outside the sphere W.

1
1 0

( cos sin ) (cos )
n n

m m m
n n nn

n m

rV c m d m P
R

  



 

                                 (90)

On the surface of the sphere, the magnetic potential of masses outside it, for r = R we can write down:
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1 0
( cos sin ) (cos )

n
m m m
n n n

n m

V R c m d m P  


 

 
                            

 (91)

The magnetic ϐield components in the local coordinate system x, y, z will be the following:

1 0

(cos )( cos sin )
mn

e m m n
x n n

n m

PH c m d m  




 


  

 ,

1 0

(cos )( sin cos )
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mn
e m m n
y n n

n m

mPH c m d m  
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
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  , 

                    
 (92)

1 0
( cos sin ) (cos )

n
e m m m
z n n n

n m

H c m d m nP  


 

 
 

Summing up (85) and (92) in the local coordinate system and introducing the following notation:

          ,
( 1) ,

m m m
n n n
m m m
n n n

h d b

n h nd b

  


  

                          
(93)

we obtain the pairs of equations whose determinant is equal to –(2n + 1), which ensures the uniqueness of separation of 
coefϐicients of magnetic ϐields into the coefϐicients of magnetic ϐields from the inner (inside the sphere) and outer (outside the 
sphere) magnetic masses.

The resulting extension of the summarized magnetic ϐield on the surface S of the sphere W are written down as follows:

1 0

(cos )( cos sin )
mn

m m n
x n n

n m

PH a m b m  




 


  

 ,

1 0

(cos )( sin cos )
sin

mn
m m n

y n n
n m

mPH a m b m  
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

 

  ,

                      
(94)

1 0
( cos sin ) (cos )

n
m m m

z n n n
n m

H a m b m P  


 

  .

Formulas (94) conclude the Gauss-Schmidt theory on decomposition (reconstruction) of the magnetic ϐield from the internal 
and external sources, i.e. magnetic masses, relative to the surface S [28,33].

In (94), unknown are the complex coefϐicients , , , ,m m m m
n n n na b a b  that can be found from the data on the surface S both at separate 

points (for approximation theory) and over the whole sphere in the form, for example, of magnetic maps available for the 
experts in Geomagnetism.

It should also be noted that for the complete separation (reconstruction) by formulas (93) and (94) of magnetic ϐields into 
the ϐields from the internal in the sphere W  and external in the domain W sources, it is sufϐicient to have data on the vertical 
component of the ϐield HZ and one of tangential components Hx or Hy on the surface S. This proves the following theorem.

Theorem 9

For interpolation and complete separation (reconstruction) of magnetic ϐields of magnetic masses in the sphere W from the 
magnetic ϐields of magnetic masses outside the sphere (in the domainW ) the data about the two components of the magnetic 
ϐield are sufϐicient: the vertical and one of tangential components to the surface S (an analog to the Gauss-Schmidt theorems).

Formulas (94) complete the development of the ϐirst (static) formalism based on the assumption of potentiality of the 
constant magnetic ϐield everywhere as related to the previous assumption about a source of a magnetic ϐield as magnetic masses.

The static paradigm in the form of formulas (92) and (94) is considered to be applicable to the case when the sphere W and 
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the domain W  are scattered and in them constant non-divergent electric currents are circulating [27]. To do this, it is necessary 
to simulate closed electric currents in sources with magnetic sheets, and to measure magnetic ϐields in the no-current region 
between W and W  [27]. Such a situation as if is observable in the Earth’s atmosphere when studying its constant magnetic 
ϐield and its long-period variations observed in the atmosphere by the world network of stations or obtained as a result of the 
worldwide magnetic survey of 1964/1965.

However in the latter case when applying decompositions (94), their insufϐiciently precise interpolation properties were 
noticed [27]. As was elucidated [10,31,32] this is associated with penetration into the Earth’s atmosphere of non-potential (by 
deϐinition) toroidal magnetic ϐields from the spherical sources: non-divergent electric currents or the currents on the spherical 
surfaces, for example, in the ionosphere (the sources of the Earth’s long-period magnetic ϐield variations).

In the penetration of a non-potential magnetic ϐield to the Earth’s non-conducting atmosphere, the Gauss-Schmidt theorem 
(Theorem 9) on separation of static magnetic ϐields can be re-formulated and proved for a stationary case as well.

Теорема 9.1

The problem of separation of poloidal and toroidal vector ϐields of the sources located outside the sphere V from the same 
ϐields but from the sources located inside the sphere is uniquely solved if the external normal component HN(r) and one of the 
two tangential components Ht(r) of the summarized vector ϐield H on the surface S of the sphere V are known.

In fact, let on S, according to formula (65), the summarized scalar function e iQ Q Q  , which consists of the outer part eQ  
and the inner part iQ , be known. Taking into account formulas (58) and (65), it is possible on the surface S to write down the 
following: 

1
1

( , ) 1[ ],
( 1)

e i nn
n nn

n

SQ Q R A B R
n n R

 




   
                    (94.1)

where An and Bn are complex constants to the outer An and the inner Bn function Q . The toroidal and poloidal components of 
the magnetic ϐield on the surface of the sphere S are calculated using deϐinitions (6) and (7):

1 ( ) ( ) ,
sin

e i e i
T Q Q e Q Q e   

 
   

 
H

2

2

1 1( ) ( )
sin

1 1sin ( ) ( ) .
sin sin

e i e i
P

e i e i
r

r Q Q e r Q Q e
r r r r

Q Q Q Q e
r

   


    

   
    

   

   
       

H
                 (94.2)

Keeping in mind the dependence of the function Q on radius r for external and internal sources in terms of (67) and omitting 
trivial formulas, we write down the poloidal ϐield components in the following way:
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                   (94.3)
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.

Based on formulas (94.2), (94.3) and (65) we present the tangential components of the summarized magnetic ϐield and its 
normal component in the form:
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Here ( , ), ( , ), ( , )n n nX Y Z C        are complex angular functions that are derivatives of the known function Sn(θ, ϕ). Formulas 
(94.4) indicate to the fact that any pair consisting of one tangential and one normal component makes possible to uniquely 
separate coefϐicients of the external and internal vector ϐields with respect to the surface S since the determinant of separating 
equations differs from zero:

1

1

1 ,     (2 1) .
,  (n+1)R  
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                    (94.5)

The separate calculation of eQ  and iQ  allows the reconstruction on the surface of the sphere S of the poloidal and toroidal 
vector ϐields both from the sources inside the sphere and from the outer sources. According to the data on the MGF for 1965, the 
numerical implementation of the separation algorithm with allowance for the toroidal ϐields is presented in [10].

The concept of Theorem 9, as one might expect, spreads to the solenoidal magnetic ϐields containing both the toroidal and 
poloidal parts.

The author has developed an efϐicient algorithm, mainly, for the sparse data on the sphere based on the stationary paradigm 
and equation (36). This algorithm is based on the following formulas:

,     0   H j H .                                (95)

Here: j is the density of non-divergent electric currents in the sphere W or in the domain W .

As is easy to see in (95), the magnetic ϐield inside the sphere W and outside it in the domain W  is non-potential, and an 
auxiliary function, i.e. the vector potential, is introduced reasoning from the solenoid property of the magnetic ϐield with the 
help of the following chain of equalities 

,    ,    ,   0,                 H A A j A A j A A j .                         (96)

The following integral is the solution to the latter equation in (96) in the sphere W:

( )
( , )W

p dw
r p q

 
jA ,                            (97)

where j(p) is the current density in the sphere W.

The further use of integral (97) with minor changes is similar to that above-mentioned. First, it is necessary to take into 
account the vector property of the current density j(p) and its complex dependence on the coordinates of the point p.

Second, it is possible to uniquely write down the vector potential as components coinciding with those of the current density 
j(p) in the integrand function in the rectangular coordinate system ϐixed at the center of the sphere. Then:
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       .                       (98)

Then the components of potential (98) must be expressed in the spherical components in order to make use of the inverse 
radius decomposition in integrals (98) in terms of the spherical functions, according to (77) and (86):
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sin cos sin sin cos .z x y zA A A A      

Substituting expansions (77) into integrals (98) and omitting intermediate formulas (similar to the above ones) we write 
down the spherical components of the vector potential from the sources with the complex density of the currents inside the 
sphere:
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In formulas (100), the decomposition coefϐicients have the following physical sense. First, these are integrals of the current 
density components of the form:
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Second, it is known  hat the expression cosr    is the projection of the radius of the vector r  on the axis z , and the expression 
sin sinr      is its projection on the axis y , etc. In this connection, the constant complex coefϐicients in (101) in the ϐirst 

approximation can be written down as follows, for example:
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From (102) it follows that the complex coefϐicients represent the projections of moments of different orders of an a rbitrary 
current system on an axis of the rectangular coordinate system, the component jx(p) giving only the projections  and m m

ny nzM M   
while the component jy(p) generates only the projections    and  m m

nx nzM M  , etc. These facts are signiϐicant for solving problems not 
only of interpolation of sparse data on the sphere S but also for physical applications [10,31,32].

If the sources of the magnetic ϐield are located outside the ball W, namely in the region W , the components of the vector 
potential will take the form:
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(103)

where h is the distance between the sphere W and the domain W .

Omitting intermediate extension, similar to those mentioned above, we can present expansions of components of the 
summarized magnetic ϐield of arbitrary non-divergent current systems in the sphere W and in the domain W as well as those 
referred to the surface of the sphere S. In the local system of the coordinates x, y, z, ϐixed on it S, the magnetic ϐield components 
on the sphere S will take the form:  
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The analysis of formulas (104) indicates to a more complicated character of the interpolation formulas for the decomposition 
(reconstruction) of magnetic components on the surface of the sphere S as related to (94). For ϐinding all complex coefϐicients in 
extension (104), it is sufϐicient to have data on the surface of the sphere S. It is easy to see that in forming interpolation formulas 
with three scalar components of the vector potential of arbitrary electric currents (except for dipole) it is sufϐicient to have data 
only on the local component Hy including the whole set of unknown complex constants. In this sense, vector sources, namely, 
non-divergent electric currents in the sphere W and outside the domain W  in their summarized magnetic ϐield require the 
measurement of one horizontal component Hy for the complete separation and reconstruction of the whole ϐield. In this case, 
the separating equations are of the form:
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The determinants in (105) are equal to ±(2n + 1), thus providing the uniqueness of separation of coefϐicients from other 
ones.

Theorem 10

For interpolation and complete separation (reconstruction) of magnetic ϐields of arbitrary non-divergent electric currents in 
the sphere from the magnetic ϐields of non-divergent electric currents in the domain outside, it is sufϐicient to have data about 
one component of the magnetic ϐield Hy that is tangential to the surface of the sphere.

Thus, in the complete magnetic ϐield, the solution to the problem of separation of coefϐicients in terms of (104) and (105) 
minimizes up to one component the requirement of the Gauss and the Schmidt theorems (Theorem 9) containing two such 
components.

The author has comprehensively investigated the numerical properties of interpolation formulas (104) [10,32]. These 
properties have revealed essential advantages of formulas (104) as compared to (94) when interpreting sparse data of the 
worldwide network of magnetic surveys [10].

These results have covered the second formalism when developing interpolation formulas for separation (reconstruction) 
of magnetic ϐields based on the data about the surface of the sphere S. 

It is easy to see that in the second formalism there is no need to predetermine the potentiality of the magnetic ϐield in the 
area between the sphere W and the domain W . The algorithm has been developed owing to the principle of solenoid features of 
the magnetic ϐield in the absence of data on the conϐiguration of currents in the space domains they occupy. In the algorithms 
developed, only the non-divergence of electric currents is clearly present. Therefore in the second formalism due to its high 
accuracy it appeared possible to verify the indirect indications to the fact that when magnetic ϐields are generated by non-
divergent toroidal currents in the sphere W and in the domain W , there may occur non-potential magnetic ϐields in the area 
between W and W  [2,3]. From the standpoint of standard Maxwell’s equations, represented by formulas (74) and (95), the 
appearance of a non-potential ϐield in the area without currents between W and     is impossible. Really, according to the Stokes 
theorem:

0( ) ( ) 0
nn j

L S S

j ds         H dl H ds                   (106)

Nevertheless, the veriϐication of (106) with the help of a magnetic ϐield measured in the Earth’s atmosphere yields a result 
drastically different from (106). A non-potential magnetic ϐield is almost half the magnetic ϐield of quiet solar-daily variations 
with the absence of the electric current through the atmosphere [2,3,10].

Further it is needed to formulate the third formalism developed for studying the problem of magnetic ϐields from the non-
divergent toroidal electric currents in the sphere W and outside it in the domain W . To this end, according to (5), it is necessary 
to make use of the ϐirst formula from (96) and the non-standard orthogonal toroidal decomposition of the vector potential A:

( ) ( )Q Q    A r r ,                     (107)

whereQ is the scalar function of the three variables (r, θ, ϕ) of the class C∞, r is the radius-vector. Decomposition (107) makes 
possible to uniquely introduce the toroidal and poloidal magnetic ϐields from the toroidal electric currents investigated in [6].

( ),      ( ),T PQ Q   H r H r ( ) ,    ( ) ,T P P TQ Q        H r H H r H               (108)

where ,      


  is the rate of the magnetic ϐield diffusion, 
1


  is the magnetic viscosity, σ is the conductivity in the sphere 

W or W , μ is the magnetic permeability in them. Formulas (96) and (107) allow one to express the vector potential components 
by means of one scalar function in the following form:

W
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and a magnetic ϐield of the poloidal and toroidal types, respectively, by the formulas: 
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Taking formulas (110) into account it is possible to write on the surface of the sphere S the expressions for the poloidal and 
toroidal magnetic ϐields from the sources located inside the sphere W:
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 Formulas (111) show that for reconstructing the whole magnetic ϐield including its toroidal part from the sources inside the 
sphere, it is sufϐicient to possess data only about the vertical to the surface S component of the poloidal ϐield Pr

i
zH H  (HZ in the 

local coordinate system). This is in agreement with Theorems 5, 7. Theorem 5 generalizes the Helmholtz theorem [19] about 
the unique decomposition (reconstruction) of the whole poloidal and toroidal magnetic ϐield in terms of its normal component 
on the sphere S.

A similar situation arises when it is required to obtain decompositions for a poloidal and a toroidal magnetic ϐield S from 
external sources of the domains W as well as on the spherical surface S. Having omitted intermediate formulas, obtain:
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If expressions (111) and (112) are summed up, it appears possible to obtain formulas (104) in the Cartesian coordinate 
system x, y, z as well. As is clear, formulas (104) are in agreement with Theorem 10. On the other hand, if unknown coefϐicients 
are obtained by means of (104), then, according to (105), by their separation it appears possible to separately calculate the 
poloidal and toroidal ϐields from internal and external sources not only on the surface S, but also at any other points including 
those between W and W . 

Theorem 11

For reconstructing the whole magnetic ϐield, including its toroidal part from the sources inside the sphere, it is sufϐicient to 
have “continuous” (or “rareϐied” in approximate theory) data about the normal to the component S of the poloidal magnetic ϐield 
Hpr (An analogue to the Helmholtz Theorem 6).

It should be noted that the third formalism proposed by the author made possible to positively answer the main question 
whether the toroidal currents (non-divergent currents j(p) in the sphere are able to generate a non-potential toroidal magnetic 
ϐield outside this sphere in the non-conducting domain between W and W , to be exact. According to deϐinitions (108), the 
answer is deϐinitely positive. This resolves the problem of the presence of a non-potential part of the Earth’s magnetic ϐield, 
for example, in the atmosphere [2,3]. This non-potential part is associated not with a potential toroidal magnetic ϐield, whose 
vortices everywhere generate a poloidal ϐield but not the electric current, which would arise according to standard Maxwell’s 
equations. A non-potential magnetic ϐield is present in the Earth’s atmosphere, while there is practically no electric current. This 
is due to the presence there of a non-potential toroidal magnetic ϐield. 

Thus, studying the electrodynamics of magnetic ϐield sources as magnetic masses and closed electric currents inside 
and outside a sphere has shown a drastic all difference between the electrodynamics of magnetic masses at the expense of 
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appearance everywhere in the magnetic ϐield of electric currents and its non-potential toroidal part. Its appearance is due to the 
spherical property of the source, i.e. the electric current in the sphere W and in the domain W . The inϐluence of the spherical 
property of electric currents is studied in considerable detail in [10,32].

The convergence of all the above-discussed decompositions of magnetic ϐields in terms of spherical functions, as is 
mentioned in [20], is not worse than that of Fourier series, because these extensions are ϐinally expressed through combinations 
of trigonometric functions.
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