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Abstract

A quantum mechanical model that considers tunneling and inelastic scattering has been 
applied to explain the hole transfer reaction from a G (Guanine) base to a GGG base cluster 
through a barrier of Adenine bases, (A)n (n = 1-16). For n = 1, the ratio of tunneling to inelastic 
scattering is about 6, which is sharply decreased to around 0.23 and 5.23 × 10-8 for n = 4 and 
16 respectively, suggesting dominance of inelastic scattering for n ≥ 4. As in experiment, the 
calculated product yield ratios (PGGG/PG) exhibit a strong distance dependence for n < 4, and a 
weak distance dependence for n ≥ 4. We also predict conditions under which oscillatory or non-
oscillatory charge transfer (CT) yield are expected. 

Introduction 
Charge transport (CT) through DNA is an important topic 

of recent interest and has biological signiϐicance as oxidation 
of a base forms a hole (positive charge) and initiates its 
transport from one base to a distant base, and hence, may 
result in mutations and carcinogenesis [1]. It is also important 
in the area of nanotechnology where researchers are trying to 
develop a highly conducting molecular wire with DNA [2-6]. 
Recently, it was shown theoretically that certain substituent 
groups attached to DNA bases can lower its activation energy 
barrier for hole transfer reaction, and hence, can enhance its 
conductivity [7]. Because of these potential applications in 
the ϐield of molecular biology as well as materials science, 
signiϐicant amount of experimental [8-15] and theoretical 
studies [16-21] have been carried out on DNA and related 
systems [15] in order to understand the hole transport 
phenomenon. The experimental studies applied techniques 
like ϐluorescence quenching of the donor (as in ref.9) molecules, 
analysis of the strand cleavage products of DNA (as in ref.14), 
and cyclic voltammetry [15] for single and double stranded 
peptide nucleic acids. The experimental results are usually 
interpreted in terms of the following classical expression that 
relates the rate of CT (kCT) to donor acceptor distance (R): 

kCT = k0 exp (-βR)                       (1)

Here, k0 is the pre-exponential factor, and β is the falloff 
parameter with a value ranging from around 0.1 to 1 Å-1. 
While a large β value (close to 1) indicates a strong distance 
dependence of the CT rate, a small value indicates weak 
distance dependence. Grozema, et al. [17e] examined a 
correlation between the ionization energy (IE) difference 
between the donor and the bridge (barrier) and the β value, 
and have noticed that as the IE difference is increased the 
β value is also increased. For hole transfer from a G base to 
an acceptor through the intervening A bases (IE difference 
= 0.55 ev), this model predicts a fairly large β value of 0.85 
Å-1 (eq 1), and hence, suggests a tunneling mechanism. As 
the IE difference together with the β value gets signiϐicantly 
smaller, the charge is considered to become delocalized 
within the bridge and the mechanism is changed from the 
single-step tunneling to the molecular wire type. Thus, for a 
large β value and IE difference, as in G(A)nGGG system, only a 
strong distance dependence, and hence, tunneling is expected 
as a hole transfer mechanism. Giese, et al. [13], experiment, 
however, suggests a strong distance dependence followed 
by a weak distance dependence as n value is increased, even 
when the same IE difference is maintained between the donor 
and the bridge. In their experiment, the hole-water reaction 
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products (P) are determined at different base sites for the 
G(A)nGGG base sequence with n = 1-16. Each G represents 
a GC (Guanine-Cytosine) base pair and A represents an AT 
(Adenine-Thymine) base pair. The experimental [13] product 
yield ratios (PGGG/PG) exhibit a strong distance dependence 
for n < 4, and a weak distance dependence for n ≥ 4. Giese, 
et al. [13], explain their experimental results by considering 
tunneling for n < 4, that switches to hopping through A bases 
(A-hopping) for n ≥ 4. There are quite a number of researchers 
[16b,17e,20,21] who have proposed a similar change in 
mechanism at around n = 4 for DNA and related systems 
[15]. In spite of all these research efforts to explain the hole 
transport phenomenon together with its characteristic 
strong and weak distance dependence, as of today there is 
no generally accepted CT mechanism for all n values. Even 
though there is a consensus regarding the operation of a 
tunneling mechanism for small n values [16g], disagreements 
exist in explaining the weak distance dependence at large n 
values. Mechanisms like hopping [16g] or “molecular wire” 
type [10g] are often considered for n ≥ 4. A “molecular wire” 
mechanism [10g] involves strongly coupled donor-acceptor 
system, and the CT takes place through π electrons according 
to band-like transport mechanism. The second mechanism, as 
discussed above, is an incoherent hopping [16g] mechanism 
where charge hops between base pairs until it reaches the 
acceptor. No matter whether a hopping or molecular-wire 
type transmission is considered for large n values, a change 
of mechanism from tunneling has been considered at n = 
4. A recent molecular dynamics (MD) study [22] however, 
contradicts this suggestion of mechanism change at a 
particular n value (n = 4) as product formation was noticed 
within the A bases even for n = 2, at which coherent tunneling 
was considered to be the only mechanism. In order to account 
for their ϐindings, the authors [22] assumed simultaneous 
operation of tunneling and hopping mechanisms. Although 
hopping has been considered by quite a few researchers to 
explain the weak distance dependence, the validity of hopping 
has been questioned on the basis of certain experimental 
results [23]. Similarly, the band-like hole transmission [10g] 
(molecular wire mechanism) is expected to give much larger 
product concentration within the A bases (barrier) than what 
has been observed in experiments [13]. 

 Two other important aspects that any CT model needs 
to address are oscillatory nature of CT yield [8] and charge 
delocalization [24], which have been observed in recent 
experiments. O’Neill and Barton’s [8] experiments suggest 
an oscillatory CT yield with an increased number of A bases 
in Ap*(A)nG base sequence, where Ap* represents a photo-
excited 2-aminopurine (Ap*) bonded to a T base. This result 
is quite different from that of Giese and co-workers where 
the CT yield is non-oscillatory [13]. So far, no explanation has 
been provided for the oscillatory/non-oscillatory nature of CT 
yield, and hence, required additional studies. 

 A polaron model [21] incorporates some degree of charge 
delocalization and describes CT in terms of hopping between 
polaron sites. Although a drift of polarons (charge carrier) 
with accompanying polarization of the medium surrounding 
the DNA can explain the weak distance dependence for n > 3, it 
fails to account for strong distance dependence for n < 4 [23]. 

 The research of various authors, discussed above, certainly 
indicates controversy rather than agreement on various DNA 
CT aspects. A number of questions can be raised regarding the 
CT phenomenon that we know today. What is the true nature 
of the CT mechanism; tunneling and hopping, tunneling and 
molecular wire-like transmission, or tunneling and altogether 
a different second mechanism? Also, do these mechanisms 
operate simultaneously at every n value or is there an onset 
of the second mechanism at n = 4? Besides, when would one 
expect oscillatory or non-oscillatory CT yield? In order to ϐind 
answers to above questions the present theoretical study has 
been undertaken. Herein, we primarily focus on the issue of 
charge delocalization, CT mechanism and product formation 
at different base sites (in G(A)nGGG structure) and the origin 
of oscillatory behavior that has been reported earlier [8]. This 
study is different from most other theoretical studies[16] in 
the sense that no change in CT mechanism is assumed a priori at 
any n value; rather, the hole transmission through the G(A)nGGG 
base sequence is considered to be due to both tunneling and 
inelastic scattering that takes place simultaneously. It should 
be mentioned that the inelastic scattering is an expected 
phenomenon for a moving hole from its donor (G or Ap*) site 
to an acceptor site (GGG or G) through intervening A bases. 
This paper has been divided into several segments. First, we 
develop the CT mechanism, calculate product concentrations 
at different base sites, and at the end, provide conditions 
under which one can expect the oscillatory or non-oscillatory 
CT yield. 

Th eory
Simplifi ed 1D potential diagram for hole transportation 

The most common practice in electron transportation 
phenomenon in solid state physics is the consideration of 
effective mass approximation. In any periodic structure 
the effective mass approximation allows one to eliminate 
the periodic potential variation with distance and replace it 
by a ϐlat potential proϐile. When one type of material forms 
a bond with another type, the energy proϐile for each type 
can be considered to be ϐlat and a potential discontinuity is 
expected at the interface. In this theoretical study a DNA 
molecular chain is considered with a G base separated from 
a GGG base cluster by a number of A bases (1-16) that form 
an energy barrier as shown in ϐigure 1. In this ϐigure potential 
energy values on the far left and far right are assumed to be 
very large implying that there is no CT from the side chains. 
This assumption is quite consistent with the fact that each 
DNA base is bonded to the side chain via a deoxyribose 
sugar unit that has a large ionization potential (10.5 ev) [25]. 
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However, the barrier on the immediate right side of the lone 
G is ϐinite (0.73 ev) [26] and is made up of A bases which the 
transporting hole from G to GGG will experience, and has been 
obtained from the calculated reorganization energy values 
[26]. While experiments do not provide a barrier height value 
for the hole transfer reaction, a signiϐicant fall in the CT rate 
with the number of intervening A bases suggests the presence 
of an energy barrier [13]. In addition, the reorganization 
energy values deduced from experimental rates [27] show an 
excellent agreement with the calculated values suggesting an 
accurately calculated reorganization energy values and hence, 
the value of the barrier height [26]. 

An overview of the quantum mechanical (QM) model

Before developing our QM CT model in details, we provide 
a physical picture of the model that involves the DNA structure 
of ϐigure 1. As soon as a hole is formed on the G base (by loss 
of an electron) it remains conϐined within the base for a brief 
period of time. The wavefunction of this newly formed hole 
(ψ0) then gradually tunnels to GGG through the ϐinite barrier 
width of (A)n bases (n = 1,2,3, etc.) and forms a distributed 
wavefunction (ψ1) throughout the potential structure of 
ϐigure 1. Simultaneously, however, there takes place another 
phenomenon called “inelastic scattering” due to interaction of 
the hole with the vibrating atoms of the bases. Through such 
interaction the hole attains enough energy to move above the 
barrier, and hence, can ϐlow directly from G to GGG. As the GGG 
potential well is three times wider, its energy states are much 
lower than that of the G. After a certain time interval from the 
creation of the hole, it totally vanishes from its upper state 
and ϐinally, appears in the lower most state (ψ2). Any reverse 
scattering from the lower most state to a higher energy state 
is quite unlikely due to a large energy gap.

So, in this paper, we ϐirst calculate the initial localized 
wavefunction (ψ0) when the hole is created and its expected 
life-time (τ1) required for it to delocalize within all the bases 
of the G(A)nGGG sequence. Then we calculate this delocalized 
wavefunction (ψ1) and its life time (τ2), after which transition 
to the lower most state (ψ2) takes place. It is expected that 
some products will be formed in each energy state (ψ0, ψ1 and 
ψ2) with a spatial distribution corresponding to the probability 
density function (wavefunction squared). 

The QM model 

As the potential energy diagram depicted in ϐigure 1 
is a simpliϐied 1D potential well, we applied the following 
Schrodinger Equation in 1D formulation:

2 2

2 ( )m E V
x
 

 
 

                                           (1a)

The corresponding equation for the probability current 
density is given by

*( * )
2

S
im x x

   
 

 
                              (1b)

Here, m is the effective mass of the hole, ψ is its wavefunction 
for the energy state E, and V is the potential energy. The above 
equation is a steady state equation when there is no change 
in particle energy, and under a bound condition of ϐigure 1 
potential there cannot be any probability current S in any 
direction. If we assume that after the formation of a hole at 
the lone G site its wavefunction interacts with the A bases in 
the barrier and the remote GGG base cluster, the solution will 
no longer remain as a time invariant one. A time dependent 
Schrodinger Equation is a complicated one to solve, for which 
we applied the following simple mathematical treatment 
after the consideration of three different hole states (initial, 
intermediate and ϐinal states, discussed in section 2.4). If any 
portion of the wavefunction interacts with the vibrating atoms 
of bases (referred to as inelastic scattering) and changes its 
original energy state, the probability of the existence of the 
hole in that particular state will gradually decrease. In order 
to include this effect, an imaginary quantity is introduced in 
the (E-V) term of equation (1a) to yield eqn (2). 

 2

2 2

2 ( )i
m E V iV

x
 

  
 

                                   (2)

Here, i is the imaginary quantity and Vi is the newly 
introduced term in the equation. The Vi term can be treated 
either as a component of an imaginary energy or an imaginary 
potential. Whatever the choice is, the ϐinal equation remains 
the same. It may be noted that the imaginary potential term Vi 
is a function of temperature [28,29] as the molecular vibrations 
or even chemical reaction rates can vary with temperature. So, 
it is possible to address the temperature variation by making 
Vi as a function of temperature. For any given energy E of the 
hole, the functional forms of the wavefunction in different 
regions (Figure 1) are given below: 

 x xCe De                                       (3)

Where 

γ =   2
1 12 ( ) /ii m E iV   for region PQ

=  2
2 22 ( ) /ii m E V iV    for region QR

=  2
3 32 ( ) /ii m E iV   for region RS

 R  S 

EG 
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Distance, x 
G (A)n GGG 

 P  Q 

V 

R (1)      (2)     (3) 

Pot. Energy 

Figure 1: Schematic potential energy diagram for the DNA base sequence, 
G(A)nGGG. Bottom of the potential well is assumed to be at zero potential 
and the barrier height to be V. The numbers (1), (2) and (3) show the 
locations of three G bases of the GGG cluster.
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Here V is the height of the potential barrier and m1, m2 and 
m3 are the effective mass in PQ, QR and RS region (Figure 1) 
respectively. Vi2 and Vi3 are the imaginary potential in QR and 
RS regions respectively. Inelastic scattering in region PQ is 
ignored (Vi1 = 0). The usual solution technique of Schrodinger’s 
equation for such a potential structure involves application 
of boundary conditions at each potential discontinuity and 
evaluation of ‘C’s and ‘D’s for each region of a normalized 
wavefunction distribution. We used the technique presented 
in [30,31] to ϐind out the eigenenergy and normalized 
wavefunction. The technique presented in [31] is particularly 
useful to evaluate normalized wave functions in presence of 
imaginary potentials. Once the wavefunction is known, the 
probability current density S (eqn.1b) can be easily calculated 
at any position using the form of solution presented in eqn. (3). 

After the imaginary potential term is introduced within 
the A and GGG regions, the values of γ (eq.3) become complex 
resulting in gradual decay of the wave function in those 
regions due to inelastic scattering. If we represent the time 
constant of wave function decay as τi, then we can write

2

G

Q

dx
i

S







                     
 (4)

Here, SQ is the probability current density at location Q 
(Figure 1) and has been deϐined by the number of holes being 
transferred per unit time. If such a process continues, after a 
while, the total wave function from the well at G will vanish 
and the hole will disappear from G and make a transition 
to GGG. No backward transition is considered as the initial 
energy at G is much higher than that at GGG [32].

Deriving equations for product concentrations at different 
base sites 

Whenever a hole is formed at the lone G base, it has a very 
high energy barrier on its left hand side and the probability 
that the hole will cross that barrier is almost nil (Figure 
1). The barrier on the right hand side is much smaller with 
a height of around 0.73 ev [26], and the hole may tunnel 
through that barrier or may have sufϐicient energy exchange 
with its neighboring bases due to thermal vibration or 
phononic interaction to overcome the barrier, and move 
to the GGG region. The tunneling through the barrier is a 
coherent process and there is no change in energy. On the 
other hand, if we consider an energy interchange with the 
surrounding molecules, there is a change in energy of the 
hole and a coherent process cannot be assumed. However, 
due to ϐinite probability of both the processes, they would 
occur simultaneously and the ultimate result is the combined 
effect of both the tunneling and inelastic scattering. Hence, it 
can be concluded that a hole generated at the G site will die 
out from that state and have the probability of reappearing in 
some other state at some other location. It is a well-known QM 
phenomenon that the energy states go lower as the width of a 

quantum well gets larger. This situation is depicted in ϐigure 
1 by indicating EG to be much higher in energy than EGGG. Once 
the hole leaves its original energy state EG, it will have a high 
probability of appearing in a lower energy state like EGGG. As 
mentioned above, in calculating product concentrations at 
different base sites, we considered the following three hole-
states that contribute to product formation. 

Product formation during initial hole state 

As soon as a hole is formed at the G site, its wave function 
(ψ0) is primarily localized onto it with some penetration 
into the barrier on the right as shown in ϐigure 2a. This is a 
metastable condition, and it is expected that the metastable 
wave function (ψ0) will tunnel through the barrier (Figure 
2b) and elastically transform to the wave function ψ1 
(Figure 3), which the wave function is corresponding to 
the whole potential structure. The time required for such a 
transformation is the time required for the accumulation of 
wavefunction ψ1 in GGG. If the probability current density at R 
(Figure 1) for this state (ψ 0) is SR0 then, the time constant (τ1) 
for such a process to buildup ψ 1 in GGG is given by 

 2
1

1
0

| |
 GGG

R

dx

S


                           (5)

If we assume that the probability of product formation 
rate at any location is directly proportional to the probability 
of hole existence (includes hole formation and decay) in that 
location and inversely proportional to the reaction time then

PG0 = B αG0 τC0 (1- exp(-τ1 /τC0))/τGC                 (6a)

PA0 = B αA0 τC0 (1-exp(-τ1 /τC0))/τAC                   (6b)

PGGG0 = B αGGG0 τC0 (1-exp(-τ1 /τC0))/τGGGC               (6c)

 

         

                 x (distance)                                                  x (distance) 
    (a)      (b) 

ψ 0 

 EG S 

G                                                               G             (A)n 
Pot. Energy Pot. Energy 

Figure 2: (a) The eigenenergy and eigenfunction of the initial hole state at G 
when the hole is created. (b) The leakage of the wave function through the 
barrier after the creation of the hole.

  Pot. Energy 

EG 

                      x (distance) 

G A(n) GGG 

 

 P  Q  R  S 

ψ1 

EGGG 

Figure 3: The potential energy diagram applied to calculate the hole state 
after time τ1. The schematic wave function for the structure is shown as Ψ1 
corresponding to the energy EG.
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Here τXC is the reaction time in the region X (region for G, 
A or GGG in ϐigure 1) and τC0 is the mean reaction time for the 
entire structure (Figure 1) calculated by taking the weighted 
average of reaction rates (inverse of reaction time) in different 
regions (please see Appendix 1 for a detailed derivation). The 
proportionality constant B takes into account any variation in 
the probability of existence of the wave function in the energy 
state under consideration and has the value of unity in this 
case as the hole is originated at this state. The αXj represents 
the probability of hole formation at a particular site and is 
calculated from the normalized wavefunction over the region 
X by applying the following eqn: 

 
2| |Xj j

X

dx                            (6d) 

Here, X represents the region (G, A or GGG) and j is the 
subscript for the wave function under consideration. If we 
consider X to be the region for G and set j = 0, then eqn. 6d 
gives a value for αG0 obtained by integrating the square of the 
wave function ψ0 over the region of G (PQ in ϐigure 1). Other 
values of α, deϐined later in eqns 8 and 10, are also calculated 
in a similar manner. For a quick check of the formula 6a-
c, when τ1 or life-time of the hole is zero, PG0= 0, that is, life 
time of the hole is too short for that energy state to form any 
product. On the other hand, when τGC (reaction time) is inϐinity 
or when the reaction takes place very slowly compared to 
other regions, again PG0= 0. As expected, in this situation the 
hole does not exist at the base site long enough to form any 
product. 

When the product formation probability due to ψ0 at 
different base sites are known from eqns 6a-c, the total 
probability (for initial hole state) is given by

P0= PG0+ PA0+ PGGG0                                (7)

Product formation during intermediate hole state

As discussed above, soon after the hole is formed at the 
G site, its wave function changes from a nearly localized (ψ0, 
Figure 2a) function to a delocalized function (ψ1, Figure 3). 
Then, the wave function ψ1 will decay gradually with a life-
time of τ2, where τ2 is calculated by eqn. 4.

Now, the product formation probabilities at G, A and GGG 
sites together with the total probability (P1) are given as 
follows, similar to eqn. 6a, 6b and 6c, for the hole state deϐined 
by ψ1:

PG1 = (1-P0) αG1 τC1 (1- exp(-τ2 /τC1))/τGC                       (8a)

PA1 = (1-P0) αA1 τC1 (1-exp(-τ2 /τC1))/τAC                 (8b)

PGGG1 = (1-P0) αGGG1 τC1 (1-exp(-τ2 /τC1))/τGGGC                (8c)

P1= PG1+ PA1+ PGGG1                     (9)

As described earlier, α values are calculated by applying 
eq.6d with j = 1 for different regions of bases. Here (1-P0) = B, 
as deϐined in eqns 6a-c and eqns in Appendix 1, and P0 is the 
probability for product formation in state ψ0.

Product  formation during fi nal hole state and total quantities

As a result of inelastic scattering the hole ϐinally makes a 
transition to the lowest energy state, EGGG. Figure 4 shows the 
schematic potential energy diagram along with the probability 
distribution function for the ϐinal hole state represented by ψ2. 

Now, the product formation probabilities at G, A and GGG 
sites are given by following expressions, similar to eqns. 6a-c 
or 8a-c for the hole state deϐined by ψ2:

PG2 = (1-P0-P1) αG2 τC2 (1- exp(-τ3/τC2))/τGC                 (10a)

PA2 = (1-P0-P1) αA2 τC2 (1-exp(-τ3 /τC2))/τAC                   (10b)

PGGG2 = (1-P0-P1) αGGG2 τC2 (1-exp(-τ3 /τC2))/τGGGC                                (10c)

This is the lower most state of the potential energy 
structure, and the backward transition to higher states by 
inelastic scattering has been ignored as the next higher state is 
about 0.5 eV higher than this lowest state, and has a very small 
probability of occupancy. Hence, the value of τ3 (time constant 
for hole transition to a higher state) is considered to be 
inϐinitely large in eqns. 10a-c. As before, α values are obtained 
by using eqn. 6d with j = 2. Hence, the total probability for 
product formation at each base site is given by

PG = PG0 + PG1 + PG2                 (11)

PA = PA0 + PA1 + PA2                   (12)

PGGG = PGGG0 + PGGG1 + PGGG2                 (13)

In addition to giving the total amounts of products at G, 
A or GGG sites (eqns 11-13), this model also allows one to 
calculate product values within any speciϐic location by taking 
into account the wavefunction distribution at that location. 
For example, we can calculate the distribution of products 
within the individual G locations of the GGG cluster. If GGG(1), 
GGG(2) (middle G) and GGG(3) are the three G locations within 
the GGG cluster (region RS as shown in ϐigure 1), then the 
amounts of products formed at these individual locations are 
proportional to the ratio of the probability at that location (G) 
to the probability at the region encompassing the GGG cluster 
corresponding to each of the wave functions, ψ0, ψ1 and ψ2, 
and can be expressed as

 Pot. Energy 

                       x (distance) 

G AT…….  GGG 

 

EGGG 

 P  Q  R  S 

ψ2 

Figure 4: Wave function after the hole is inelastically scattered to the lowest energy 
level at EGGG. Other higher states will also have similar wave functions, but their 
probability of occupancy is much smaller than this lowest state.

https://www.heighpubs.org/jpra/ijpra-aid1022-Appendix 1.docx
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PGGG(r) = j PGGGj× (  ( ) /  )GGGj GGGjr                 (14) 

where j = 0, 1 or 2 (corresponding to the subscripts of the 
wave functions ψ0, ψ1 and ψ2) and 

 
2

( )

( ) | |GGGj j
GGG r

r dx   , 

where r is the G location within GGG (Figure 1) and assumes 
values 1,2 or 3 and 

 
2| |GGGj j

GGG

dx   . Since the calculation of 

α requires ψ0, ψ1, and ψ2 functions, in next section we discuss 
how to calculate these functions and their associated energies.

Applying QM model for calculating ψ 0, ψ 1, and ψ 2  

As mentioned above, these calculations were done 
numerically by using a method described in [30,31] and using 
the MATLAB series of programs [33]. In the calculation of ψ0 
we assume that soon after the formation of the hole at G, it will 
not experience the potential due to GGG, for which we consider 
a potential proϐile with an inϐinitely extended A barriers to the 
right as shown in ϐigure 2a. With the barrier height [22] of 0.73 
eV, the lowest eigenstate for the G well (Figure 2a) has the 
energy of 0.64 eV. Then, we assume a potential structure like 
that shown in ϐigure 2b and calculated the rate of tunneling 
through the barrier of A bases. After tunneling, the wave 
function is distributed as shown schematically in ϐigure 3, and 
is represented by ψ1. Since tunneling is a coherent process both 
ψ0 and ψ1 will have the same energy (0.64 eV). Although ψ0 
belongs to the lowest energy state for the potential structure 
of ϐigure 2a, ψ1 does not for the potential structure of ϐigure 
3 or 4. The lowest eigenstate (ψ2) for the potential structure 
of ϐigure 3 or 4 is substantially lower in energy with a value 
of 0.16 eV (EGGG). For this large energy gap, the possibility of 
back transfer of hole from the low energy GGG site to high 
energy G site has been neglected in our numerical calculation. 
Even though for illustration purposes we provided schematic 
diagrams of wavefunctions (Figures 2-4), some of the actual 
functions, as calculated from the potential structure are 
presented later (Figure 7a-c).

We also examined other immediately higher energy states 
(which ranges from 0.565 to 0.612 eV) for different barrier 
widths, and ϐind that they contribute very little toward the 
hole population or product concentration due to their lower 
probability of occupancy, and hence, these excited states were 
ignored. It is important to know that the hole populations 
at different eigenstates are determined by the Maxwell 
Boltzmann probability distribution function. 

Calculating current components for tunneling and inelastic 
scattering 

In calculating tunneling and scattered current components, 
we ϐirst assumed Vi =0 in the barrier region (but not in GGG) 
so that there is no inelastic scattering due to the barrier, and 
all the current that is observed at the boundary of G and (A)
n is due to tunneling current (ST) only. Then, we introduced 
Vi in the barrier and calculated the current at G. This current 
includes both tunneling (ST) and inelastically scattered (SI) 

Figure 5: The tunneling (ST)/inelastic scattering (SI) ratios are presented against 
the number (n) of A barriers. The decrease in the ratio is most signifi cant from n = 
1-4, and then almost levels off. This result is obtained for the G(A)nGGG sequence 
with a potential energy barrier [22] of 0.73 eV.

components. Thus, we separated the tunneling and scattered 
components from the total current and present results in 
table 1. Figure 5 shows how the ratio of tunneling to inelastic 
current density (ST/SI) decreases with an increased barrier 
width. 

Eff ective hole mass, imaginary potential and reaction time

Because of the lack of reported results on effective mass 
or imaginary potential in the literature, we obtained these 
values by ϐitting the experimental data [13] points. These 
parameters were needed for the predictions of oscillatory and 
non-oscillatory nature of the product yield. The best ϐit curve 
and the data points are shown in ϐigure 6. The effective masses 
of the hole at the G (or GGG) and A sites are determined to be 
around 1.42 m0 and 1.50 m0 respectively, where m0 is the rest 
mass of an electron. These masses are in line with the typical 
hole masses that are considered in different charge transport 
phenomena in physics and electronic engineering. Similarly, 
the imaginary potential (Vi) value has been determined to be 
0.25 × 10-10 eV.

Table 1: Tunneling and inelastic probability current components, ST, SI, their ratio, 
and time involved in hole decay from the lone G (τ2) base are presented for different 
barrier widths (n = 1- 16) of DNA base sequence, G(A)nGGG. The S values are in units 
of number of particles (holes)/sec and time constants are in seconds.

n ST SI ST/S I τ2 (sec)
1 5.2E+06 8.0E+05 6.5E+00 5.6E-08
2 1.1E+05 2.5E+04 4.5E+00 2.4E-06
3 2.0E+04 2.0E+04 1.0E+00 9.8E-06
4 5.9E+03 2.6E+04 2.3E-01 1.4E-05
5 1.7E+03 2.9E+04 5.8E-02 1.6E-05
6 4.8E+02 3.1E+04 1.6E-02 1.6E-05
7 1.4E+02 3.1E+04 4.4E-03 1.6E-05
8 3.8E+01 3.1E+04 1.2E-03 1.6E-05
9 1.1E+01 3.1E+04 3.5E-04 1.6E-05

10 3.1E+00 3.1E+04 9.9E-05 1.6E-05
11 8.8E-01 3.1E+04 2.8E-05 1.6E-05
12 2.5E-01 3.1E+04 8.0E-06 1.6E-05
13 7.1E-02 3.1E+04 2.3E-06 1.6E-05
14 2.0E-02 3.1E+04 6.5E-07 1.6E-05
15 5.7E-03 3.1E+04 1.8E-07 1.6E-05
16 1.6E-03 3.1E+04 5.2E-08 1.6E-05
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As discussed above, in the process of hole transfer from 
G to GGG, if the hole remains at a particular base site longer 
than the time required for its reaction with water, products 
will form. For the water trapping reaction with a hole at the 
G site (forming G+), the experiment by Giese and Spichty [34] 
provides a rate constant (k) value of around 6.0 × 104/s and 
hence, the time of reaction (τGC) of 1.67 × 10-5 sec (1/k). The 
same experiment also suggests reaction at the GGG site to be 
3 times faster, and hence, τGGGC = τGC/3. While the experiment 
suggests a much slower reaction at the A site, no rate constant 
value has yet been reported for the water trapping reaction 
at this site. In the absence of such experimental data, we 
examined a number of values by considering rate at A to be 
5, 10 or 15 times slower than that at the G site. These results 
suggest that 10 times slower rate or τAC = τGC × 10 gives a 
product concentration at A in better agreement with that of 
the experiment [13]. It is to be mentioned that only the percent 
product formation inside the barrier is dependent upon this 
value and has no effect on the overall ϐindings of this study.

Results and discussions
Nature of wave functions at different barrier widths 

Figures 7a-c are representative hole probability functions 
(|ψ|2) for n = 1 and n = 6 of G(A)nGGG sequence obtained by 
applying the present QM model. The ψ0 function is presented 
in ϐigure 7a and ψ1, and ψ2 are presented in ϐigure 7b and 7c. 
As the barrier width is increased from n = 1 (Figure 7b) to n = 6 
(Figure 7c), a remarkable change in ψ1 (dashed curve in 7b and 
7c) function is noticed. As expected, for the smallest barrier 
width of n = 1, the wavefunction penetration within the barrier 
is signiϐicant suggesting relatively large hole concentrations at 
the A as well as GGG sites due to this wave function. For n > 4, 
the ψ1 function (see dashed curve, Figure 7c for n = 6) exhibits 
a much decreased penetration resulting in a negligibly small 
hole concentration within the distant A bases of the barrier 
and the GGG site, and thus, reaches a probability distribution 
that remains almost unchanged for larger n values (ϐigures 
presented in supplemental information section).

The ψ2 function (solid curve in 7b and 7c), on the other 
hand, shows large probability distributions at the G bases of 

the GGG cluster and much smaller probability distributions 
at the lone G base. Hence, ψ2 is primarily responsible for hole 
concentration at the GGG destination site. As the n value is 
increased from n = 1 to n = 6, the ψ 2 function shows increased 
conϐinement in GGG site suggesting its major contribution 
toward product formation for larger n values. From the nature 
of these hole distribution functions it is obvious that the total 
hole concentrations at various base sites are given by the 
combined effect of ψ0, ψ1, and ψ2 functions.

Tunneling, inelastic scattering and CT mechanism

Figure 5 shows how the probability ratio of tunneling (ST) 
to scattering (SI) decreases when the barrier width is increased 
from n = 1-16. Our calculations suggest that the actual transition 
from ψ0 to ψ1 is a fast process (τ1 varies from 1.5 × 10-15 s for 
n = 1 to 1.2 × 10-18 s for n = 16) for which practically, there 
is no contribution from ψ0 towards the product formation. 
The major contribution of products comes from ψ1 and ψ2 

states. The ratio of tunneling to inelastic scattering for ψ1 is 
about 6 for n = 1 (one intervening A base), which decreases 
sharply as n value is increased. Table 1 presents these values 
together with the time constant, τ2 (sec), for the decay of the 
wave function ψ1 from the lone G base. While the tunneling 
current, ST (number of holes/sec), decreases consistently 
with the increased n value, the inelastic scattering probability 
(SI) initially decreases upto n = 3, then increases slightly and 
ϐinally levels off at around n = 5. A possible explanation for 

Figure 6: Experimental data points [13] and theoretical solid curve are shown. The 
barriers are due to A bases lying in between the G base and the GGG base cluster.

7b.  |Ψ1,2|2 for  n =  1

7c.  |Ψ1,2|2 for  n = 6 

Figure 7: The probability functions, |Ψ0|2, |Ψ1,2|
2 are presented against distance from 

the lone G base of the G(A)n_GGG sequence.  Figure 7a represents |Ψ0|
2, and Figures 

7b and 7c represent |Ψ1,2|
2 (dashed curve and solid curve) functions for n = 1 and 

n = 6 respectively. A substantial change in |Ψ1|
2 function with barrier width can be 

noticed from Figure 7b to 7c.
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this trend can be due to the fact that the inelastic scattering 
is present both at A(n) as well as GGG sites. Eq.3 shows that 
the impact of imaginary potential will be stronger for smaller 
values of (E-V) or kinetic energy term while calculating the 
value of γ. Physically, movement of the hole in A(n) region 
will be a slower process compared to its movement in GGG 
as kinetic energy in GGG region is much higher. Hence, the 
effect of inelastic scattering would be stronger in A(n) and 
weaker in GGG region. For smaller values of n signiϐicant 
inelastic scattering takes place in GGG compared to A(n) as 
A(n) is still very thin and contain a very small fraction of the 
total wavefunction (Figure 7b). As n increases, wave function 
in GGG decreases quite rapidly but increases in A(n) gradually. 
So, the interplay of these two inelastic scattering effects make 
the overall inelastic scattering decrease as n increases from 1 
to 3. After that (n = 4 and 5) the wavefunction in GGG becomes 
very small to have any signiϐicant impact but fraction of 
wavefunction in A(n) keeps on increasing very slowly which 
is apparent from the increase value of SI in table 1. For n > 5 
the penetration of wavefunction inside A(n) saturates (Figure 
7c) and the inelastic scattering does not show any further 
increase. Table 1 also shows that the decay time constant, τ2, 
increases with the increasing number of A bases until n = 4, 
and then remains constant. This result is consistent with the 
fact that a strong distance dependent CT takes place for n < 4 
and a weak distance dependent CT takes place for n ≥ 4.

Product concentrations at different barrier widths

While hole concentrations at different base sites can be 
readily obtained from the probability wave functions (|ψ|2), 
and are related to the amount of product formed, the exact 
calculation of product concentration requires hole reactivity 
at a base site and the survival time of the hole. With these 
considerations, and the application of equations 5-13, the 
product concentrations have been calculated. Table 2 presents 
percent product concentrations at different base sites for G(A)

nGGG system with n = 1-16. For the smallest barrier width of n 
= 1, a hole does not remain at the lone G or A site long enough 
to form any signiϐicant amount of products. Hence, the product 
concentration (P) is the largest at the GGG site (over 99%) 
and smallest at the lone G (0.27%) and A (0.15%) sites. As the 
barrier width is increased by adding another A base (n = 2), 
the hole ϐinds it harder to get through the barrier, and hence, 
remains at the lone G and A sites for a longer amount of time. 
This results in larger product concentrations at the G and A 
sites of around 5% and 1%, respectively with the rest (94%) at 
the GGG site. This trend in concentration change is continued 
up to n = 4 when the product concentrations at the lone G, 
A and GGG sites are around 27%, 4% and 69% respectively. 
Interestingly, for n > 4, the product concentrations at the 
base sites remain almost unchanged. At these barrier widths 
(n > 4), tunneling is insigniϐicant (Table 1) compared to 
inelastic scattering, and hence, CT is primarily due to inelastic 
scattering of the hole, which almost levels off at n > 4. It should 
be pointed out that although the tunneling effect is quite small 
at n > 4, it consistently decreases and may explain a very small 
decreasing trend in product formation with increased n values. 
Although cannot be noticed within our reported number of 
decimal places in table 2, this decrease in product formation 
reϐlects a longer hole transportation time from G to GGG when 
the number of intervening bases (n value) is increased.

As mentioned earlier, our QM model gives product 
concentrations not only at the G, A and GGG sites it also 
predicts product concentrations at the individual base site of 
the GGG base cluster (Figure 1). For each n value, the product 
concentration, as calculated by using eq.14, is largest at the 
middle G (GGG(2), Table 2) and smallest at the farthest G 
(GGG(3), Table 2) of the GGG cluster, and is in agreement with 
the experimental results [13].

Hopping vs. other inelastic scattering mechanisms of CT

In our QM model, the imaginary potential incorporates 
a loss mechanism of the hole from any particular region. 
Hopping through the bridge is one such mechanism in which 
the hole acquires enough energy to overcome the barrier, 
and hence, leaves its original energy state to land onto the 
next state. In addition, there are other inelastic processes 
like chemical reactions that may also cause hole loss from a 
particular region. So, it is quite possible that more than one 
inelastic process may take place in a region. For example, 
within the bridge region the hole loss can be due to both 
hopping as well as chemical reactions. If the time constants 
for these individual processes are known, one would be able 
to estimate the extent of hopping through the bridge. 

Origin of oscillatory/non-oscillatory CT yield

In order to examine the oscillatory CT yield in Barton’s 
experiment that involves Ap*(A)nG sequence, and non-
oscillatory CT yield in Giese’s experiment for G(A)nGGG 
sequence, following calculations were carried out. First, we 

Table 2: Percent product (P) formation at different base sites of the G(A)nGGG 
sequence. A breakdown of PGGG into PGGG( 1), PGGG(2) and PGGG(3) corresponding to 
GGG(1), GGG(2) and GGG(3) (Figure 1) are also presented in the table.

n P G P A
PGGG

P GGG(1) P GGG(2) P GGG(3)
1 0.27 0.15 34.24 49.40 15.94
2 4.51 0.62 33.01 44.11 17.75
3 17.37 2.32 28.87 34.45 16.99
4 26.60 3.84 24.43 32.03 13.11
5 29.28 4.46 22.76 32.24 11.26
6 29.67 4.63 22.39 32.56 10.74
7 29.66 4.67 22.33 32.73 10.62
8 29.62 4.68 22.33 32.79 10.59
9 29.59 4.68 22.33 32.82 10.58

10 29.58 4.68 22.33 32.83 10.58
11 29.58 4.68 22.33 32.83 10.58
12 29.58 4.68 22.33 32.83 10.58
13 29.58 4.68 22.33 32.83 10.58
14 29.58 4.68 22.33 32.83 10.58
15 29.58 4.68 22.33 32.83 10.58
16 29.58 4.68 22.33 32.83 10.58
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calculated the energy barrier for the Ap(A)nG sequence by 
using the same procedure as was used for G(A)nGGG sequence 
[26]. In brief, reorganization energies (λ) were calculated by 
using the B3LYP/6-311++G** method [35-38] followed by the 
application of following Marcus’ eqn.(eqn. 15) [39]: 

2)1(
4 
 GEa


                   (15)

These calculations yield a barrier height (Ea) of 0.19 ev, 
which is signiϐicantly smaller than that of G(A)nGGG system 
[26] with a barrier height of 0.73 ev. In eqn (15) ∆G is the 
free energy change for hole transfer from the donor to the 
acceptor. 

In Giese’s system we obtained a bound state with an 
energy value of 0.64 ev, as discussed earlier, and is lower than 
the barrier height (0.73 ev) [26]. The same method, when 
applied to Barton’s system, did not result in any bound energy 
state suggesting that the energy of the hole for Ap*(A)nG 
system is larger than the barrier height (0.19 ev). These two 
distinct differences, E < Vo for Giese’s system, and E > Vo for 
Barton’s system provide incentive to apply QM transmission 
expressions (T, eqns 16 and 17) to see how the probability of 
hole transmission change in these two situations. Eqns 16 and 
17 are well-known QM expressions derived for a rectangular 
barrier (like ours, without the potential wall on far left or 
far right of ϐigure 1) with width a. For hole energy less than 
the barrier height, E < Vo, there is a non-zero transmission 
probability (tunneling) given by eqn 16, and is presented in 
ϐigure 8a for different k1a (or a) values. In eqns 16 and 17, t 
is the amplitude of transmitted wave, T is the probability of 
transmission (or transmission coefϐicient), a is the barrier 
width, and k1 is a constant for a particular hole energy. 
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For energies greater than the barrier height, E > Vo, the T 

value is given by eqn 17 and is presented in ϐigure 8b. 
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For eqn 16 we used Vo = 0.73 ev, E = 0.64 ev, and for eqn 17 
we used Vo = 0.19 ev, and selected an E value larger than the 
barrier height with a value of 0.43 ev. Although 0.43 ev energy 
value has been selected arbitrarily, the value represents an 
approximate energy that is given off when a hole transfers 
from Ap+ to a G base involving ionization energy (IE) of G (to 
form G+) and electron afϐinity of Ap+ (-IE of Ap). The IE values 
were calculated by applying the B3LYP/6-311++G** method. 

Since ϐigure 8a represents only the tunneling effect, there 
is no ϐlat weak distance dependence segment of the curve as in 
ϐigurer 6. This conϐirms our ϐinding that a second mechanism 
(inelastic scattering) must be present to account for the weak 
distance dependence of CT yield when E < Vo. The oscillatory 
nature of hole transmission is indeed observed for E > Vo 
(Figure 8b), which represents Barton’s experimental condition. 
Classically, the condition E > Vo would mean that the hole will 
be transferred from the donor to acceptor by simply passing 
over the barrier resulting in 100% transmission. However, in 
quantum mechanics, the incident wave from the donor side 
will suffer reϐlection at each of the potential discontinuities 
of the barrier even if E > Vo. Under such a condition, change 
in bridge length will change the phase of the forward and the 
reϐlected propagating waves and their interference give rise 
to the oscillations as observed in the transmission co-efϐicient 
shown in ϐigure 8b. It is expected that the product formation 
at different base sites will be related to the hole transmission 
probability from a donor to the acceptor. It is interesting 
to note that the period of oscillation is around 3.0 (in K1a 
unit) in ϐigure 8b, which corresponds to a barrier thickness 
(a) of 10.1 Å with 4 intervening A bases (10.1/3.4 + 1). For 
this calculation, ϐirst k1 value (2.98 × 109 m-1) was obtained 
assuming the mass of the hole to be close to (1.4 m0) that 
obtained for a G or an A base in G(A)nGGG system (discussed 
earlier). The number of intervening A bases, thus obtained, is 
very close to that of the experiment with a value of around 
3 (ref 8). Although the period of oscillation in ϐigure 8b is 
close to that obtained in experiment, unlike the experiment, 
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the oscillatory function does not decrease with the increased 
barrier thickness (a). This is presumably the result of the 
simplicity of the transmission analysis in which back electron 
or hole (BET) transfer resulting from the hole reϐlection 
from the potential wall on the far right (Figure 1) has been 
ignored. In spite of this simplicity, the transmission analysis 
provides the origin of oscillatory/non-oscillatory patterns in 
CT yield and explains both Barton’s and Giese’s result. A more 
rigorous study is now underway to explain quantitatively 
the decreasing oscillatory function of the CT yield when the 
barrier width is increased. 

Comparison with density matrix theory

May and Schreiber [40] in their density matrix theory 
(DMT) consider LUMOs (lowest unoccupied molecular 
orbitals) to be the localization centers for the extra electron 
from the donor. This extra electron moves within the 
pseudo-potential of the total electronic system of the entire 
molecule. In addition, the Hamiltonian, as deϐined in the 
DMT, also includes potential energy terms corresponding 
to contributions from environment (solvent) as well as 
molecular vibrations. For a large molecular system like G(A)
nGGG such calculations become very complicated. In our 
study much simpler treatment has been followed in which a 
hole moves within a rectangular potential barrier of A bases. 
Instead of LUMOs we considered bound states deϐined by a G 
base and the barrier due to A bases. Unlike DMT, the solvent 
effect has only been considered in an indirect manner through 
the use of an effective hole mass as well as the reaction rate 
(time constant) obtained by ϐitting the experimental data. 
Similarly, the effect of vibration on hole transfer has also been 
considered via the use of the imaginary potential. 

Concluding comments
In our model simultaneous interplay of two mechanisms, 

tunneling and inelastic scattering, have been considered 
to explain the experimental results [13]. For E < Vo (Giese’s 
experimental condition), the ratio of tunneling to inelastic 
scattering current decreases sharply from a value of around 
6 for n = 1 to around 0.06 for n = 5. Without considering any 
mechanism change in advance for n > 3 or without explicitly 
considering hole hopping from one A to another, the model 
explains experimental results of product formations at 
different base sites. At every n value both tunneling and 
inelastic scattering takes place as the hole migrates from G to 
GGG. As in experiment, the present model explains a strong 
distance dependence of CT for n = 1-3 and a weak distance 
dependence for n > 3 (Figure 6). While most models consider 
the onset of a distance independent A-hopping mechanism for 
n > 3, our model predicts dominance of distance independent 
inelastic scattering (SI) after an initial drop from n = 1 to n 
= 3 (Table 1). The weak to very weak distance dependence 
for n > 3 is due to a decreasing tunneling (ST) probability 
superimposed on to the inelastic scattering values. For E > Vo 
an oscillatory function is obtained with a period of oscillation 
close to that obtained in the experiment.
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