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Introduction
As shown e.g. in ref.[1] Zitterbewegung (trembling motion) 

of the free Dirac electron is generated if transitions between 
positive and negative energy states occur. Here we treat this 
effect in a single-mode conϐiguration using a density matrix 
method. As compared with more elaborate conventional 
treatments, this method allows an easy estimate of the 
amplitude of the motion. The result is by predicted spreads of 
the free electron charge.

The density matrix calculation

We consider solutions of the Dirac equation of the form

                                                                                                                               (1)

with p a momentum in a given space direction. We then 
deϐine a density matrix by the relation

                                                                      (2)

where the symbol × designates a tensor product. The 
quantity p  satisϐies the Liouville-von Neumann equation, [2] 
natural units ( 1,  1)c 

 ,D
pi h p
t







                                                                                                                                                    (3)

involving the commutator with the free-electron 
Hamiltonian hD. The functions  u p and  v p obey the eigen 
value equations with E > 0.

   Dh u p Eu p                                                                                                                                           (4a)

   Dh v p Ev p                                                                                                                                                (4b)

specifying them as positive and negative energy solutions. 
Introducing the function of eq. (1) into the density matrix of 
eq. (2) we write

       † †
1 2 3 4( )p u p v p u p v p p p p p                                 (5)

Here the commutators   †
1, ,D Dh p h u u       and 

  †
2, ,D Dh p h v v       vanish and we are left with the equations

† †
3 , 2Di p h u v Eu v

t
      
                                                                                                             (6.1)

† †
4 , 2Di p h v u Ev u

t
       
                                                                                                             (6.2)

yielding the solutions

 † † 2i Etu v u v e                                                                                                                                   (7.1)

 † † 2i Etv u v u e                                                                                                                                 (7.2)

For the time-independent factors u(p), v(p)  we now 
introduce quantities corresponding to a Lorentz boost in the 
x3 direction and more explicitly those given by the following 
expressions [2]
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Working out the tensor products we then ϐind after some 
algebra and omitting for simplicity the superscript on p3.

 3
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                                                                                          (9.1)

  ( )u p v p     

†  p    
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                                      9.2)

So far the density matrix has not been normalized to 
unity. To achieve normalization we ϐirst notice that we have 

† † 2Tru u u u E   and † † 2 ,Trv v v v E   from the deϐinitions of 
these quantities. Noticing further that, according to eq.’s (8.1) 
and (8.2) we have 3 4 2  ,Tr Tr p    we arrive at the total trace 

4 4 4( )Tr E p E p                                                                                                                                               (10)

Let us now consider the amplitude operator of the 
oscillatory electron motion, which we deϐine as follows :
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and calculate the average values  3 ˆ Tr x  and  4 x̂ . Using 
eq.(8.1) and (8.2) we then ϐind

    2
3 4 4

ˆ ˆ 1x x E pTr Tr x
E p

  
  


                                     (12)

where the normalization factor of eq.(10) has been taken 
into account. 

To describe the motion of the electron, we then add the 
time-dependent factors of eq.’s (7.1) and (7.2). and thus 
consider the quantity

     2 2 2
3 4ˆ ˆ 1 2
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i Et i Et E pTr e Tr e x cox Etx s

E p
  
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

             (13)

Discussion
In this approach, according to eq. (13), there are rapid 

harmonic oscillations in the χ2 direction i.e. perpendicular 
to the translatory motion of momentum p3. To estimate the 
amplitude of these oscillations, known as Zitterbewegung, 
we deϐine a velocity by differentiating the r.h.s. of eq.(13) and 
write.

     2 21 2 2
2

E p d E pv t x cos Et Ex sin Et
E p dt E p
 

  
 

                (14)

with the maximum value

2
max

E pv Ex
E p





                       (15)

becoming in the rest frame with p = 0   

2
maxv mx                                            (16)

Clearly maxv cannot exceed c or 1 in natural units, and by 
adopting this value we obtain from eq.(16) the amplitude

2 1x
m

                                         (17)

equal to the Compton wavelength.

Concluding remarks
The result thus obtained conforms with the idea found in 

the literature [3,4], according to which there is an apparent 
spread of the free electron charge over a region with the 
dimension of the Compton wavelength.

Note however that a different approach to this problem is 
presented in Weisskopf’s positron-hole theory [4].

Note ϐinally that Zitterbewegung need not be attributed to 
interference between positive and negative energy states if 
the Dirac theory is reformulated accordingly [5].

References
1. James D. Bjorken and Sydney D. Drell, Relativistic Quantum Fields, 

McGraw-Hill. 1965.

2. Schuller F, Advanced Physics on the Atomic, Sub-Atomic, and 
Macroscopic Scale. Amazon books 2020.

3. Milonni PW. The Quantum Vacuum, Academic Press, 1994.

4. Weisskopf VF. Phys Rev. 1939;56:72.

5. Hestenes D. The zitterbewegung interpretation of quantum mechanics, 
Foundations of Physics. 1990;20: 1213-1232.


