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Abstract

The adjusted Hardy-Rogers result generalization for the fi xed point is demonstrated in this 
study, validating our results utilizing an application.

Introduction 

The existence and uniqueness of a point ξ ∈ X, such that T: 
X → X, is a contraction mapping where X is a complete metric 
space was proved by Banach [1]. 

( , ) ( , ),d f f d                         (1)

for all ξ, ζ ∈ X and α   [0,1). Kannan [2] developed (1) as 

( , ) [ ( , ) ( , )],d f f d f d f                             (2)

for all , X    and 1(0, )
2

  . Reich in [3] generalized (2) as 

1 2 3( , ) [ ( , ) ( , ) ( , )],d f f d d f d f                              (3)

for all ξ, ζ ∈ X such that η1 + η2 + η3 < 1. Then f has a unique 
ϐixed point in X.

In the same direction, Hardy and Rogers in [4] introduced 
the following

Theorem 1.1 

Let (X, d) be a metric space and f a self mapping of X satisϔies

1 2 3 4 5( , ) ( , ) ( , ) ( , ) ( , ) ( , ),d f f d f d f d f d f d                      
                     (4)

for ξ, ζ ∈ X where η1, η2, η3, η4, η5 are non-negative and we 
set α = η1 + η2 + η3 + η4 + η5 . Then, 

If X is complete metric space and α1, f has a unique ϐixed 
point.

If (4) is adjusted to the condition ξ ≠ ζ implies 

1 2 3 4 5( , ) ( , ) ( , ) ( , ) ( , ) ( , ).d f f d f d f d f d f d                     
                       (5)

Such that X is a compact with continuous mapping and α + 
1, then f has a unique ϐixed point. 

Recently, many of the Hardy-Rogers-type notions have 
been developed. From these studies, we refer to Rangama [5] 
established the existence of the Hardy-Rogers-type common 
ϐixed point in 2-metric space. With respect to the aiding 
function, Chifu [6] provided a few ϐixed point theorems in 
b-metric space utilizing the Hardy-Rogers type. New Hardy-
Rogers-type results have been provided by Patil, et al. [7]. 
Victoria [8] obtained the P-proximate cyclic contraction in the 
uniform spaces utilizing the Hardy-Rogers type. Using partially 
ordered partial metric space, Abbas [9] developed a few ϐixed 
point theorems for the Hardy-Rogers type. The common ϐixed 
point theorem for T-Hardy-Rogers contraction mapping in a 
cone metric space was established by Rhymend, et al. in [10]. 
Saipara generalized some ϐixed point theorems for Hardy-
Rogers-type in metric-like space [11]. Raghavendran, et al. 
[12] included a recent article relevant to the focused topic. 

Main res ults
We will introduce and prove the adjusting generalization 

of the Hardy-Rogers type as 
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2( ( ), ( )) 0, .nd g g u n   

We have 

1
1 1 1 1( , ( ))= ( ( ( )), ( ))d u f u d f f u f u   



1
1 1 1 2 1 1 3 1 1( ( ( )), ( )) ( , ( )) ( ( ), ( ))d f f u f u d u f u d f u f u         

1
4 1 1 5 1 1( , ( ( ))) ( ( ), )d u f f u d f u u    

1 2 5 1 1=( ) ( , ( )).d u f u   

Hence, 1 1( )=f u u .

likewise, we can prove that gβ (u2) = u2. Now, we will prove 
that u1 is a common ϐixed point of fα and gβ, as 

1 2 1 1 1 1 2 2 2 2 3 1 2 2 4 2 1 1( , ) ( , ( )) ( , ( )) ( , ( )) ( , ( ))d u u d u f u d u f u d u f u d u f u         

5 1 2( , )d u u

3 4 5 1 2=( ) ( , ).d u u   

Consider u3 ∈ X such that it can be used to demonstrate the 
uniqueness of u1. 

( 3 3 3 3)= , ( )= .f u u and g u u 

Therefore 

1 3 1 1 3 3( , )=( ( ), ( ))d u u f u f u 

1 1 1 1 2 3 2 3 3 1 2 3( , ( )) ( , ( )) ( , ( ))d u f u d u f u d u f u      

4 3 1 1 5 1 3( , ( )) ( , )d u f u d u u  

3 4 5 1 3=( ) ( , ).d u u   

Hence, 

1 2 3= = .u u u

Thus, u1 is the unique ϐixed point of fα and gβ. 

Theorem 2.1 can be stated as follows: 

Theorem 2.2 

Let fk be a self-mappings on X, such that 
( )= ,k k k kf z z X and z X k     respectively, such that 

1 2 3 4( ( ), ( )) ( , ( )) ( , ( )) ( , ( )) ( , ( ))k k k k k kd f f d f d f d f d f                

5 ( , ).d                       (9)

For all ξ, ζ ∈ X, ξ ≠ ζ and 5

=1
1.ii

  

Proof. Theorem 2.1 may be proven using the same way 
used to prove Theorem 2.2. 

Our main result has corollaries, we leave their proof for 
the reader. 

Corollary 2.3 

Let X be a complete metric space and let f : X → R a continuous 

Theorem 2.1 

Let {fα} be a family continuous self-mappings in a complete 
metric space X, suppose that

1 2 3 4( ( ), ( )) ( , ( )) ( . ( )) ( , ( )) ( , ( ))d f f d f d f d f d f                     

5 ( , )d                             (6)

for every ξ, ζ ∈ X, ξ ≠ ζ and 5

1 2 3 4 5 =1
, , , , 1.ii

       Then fα (ξ) 
has a unique ϐixed point u1 ∈ X.

Proof. For 0 0, X    take 1 1( )= , ( )= ,n n n nf g       

1 1( , )= ( ( , ( ))k k k kd x y d f g   

1 1 1 2 1 1 3 1 1( , ( )) ( , ( ) ( , ( )k k k k k kd f d g d g               

4 1 1 5 1 1( , ( ( , )), .k k k kd f d k                            (7)

So, 

1 1 2 1
=1 =1

( , )= ( ( , ( ))
n n

k k k k
k k

d x y d f f    

1 1 2 1 3 1 4 1
=1

[ ( , ) ( , ) ( , ) ( , )
n

k k k k k k k k
k

d d d d                 

5 1 1( , )]k kd   

1 0 2 0 3 1 4 1
=1 =1

[ ( , ) ( , ) ( , ) ( , )
n n

n n k k k k
k k

d d d d                

5 1 1
=1

( , )].
n

k k
k

d   

Also, 

1 1 1 2 0 3 4 1
=1 =1 =1

( , ) [ ( , ) ( , ) ( , ) ( , )
n n n

k k n n k k k k
k k k

d y d d d d                  

5 1 1
=1

( , )],
n

k k
k

d   

and, 

1 1 5 0 2 3 1 1
=1

( , ) ( ) ( , ) ( ) ( , ).
n

k k n n
k

d d d             

Then, 

1 1
=1 =1 =1

( , ) ( , ) ( , ) .
n n n

k k k k k k
k k k

d d y d y                          (8)

Therefore, 1=1
( , ) 0

n

k kk
d as k     , hence {XK} is a 

Cauchy sequence. Also, {YK} is a Cauchy sequence in X, and 
since X is a complete metric space, there exists a common 
ϐixed point in X.

Suppose that, 

1 2 1 2= , = , , ,lim limn n
n n

u u u u X 
 

 

we get, 

1( , ) 0, ,nd u n  

1( , ) 0, .nd u n  

since, fα, gβ are continuous mappings we obtained, 

1( ( ), ( )) 0, ,nd f f u n   
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self-mapping on X, let f satisfying (4) for all ξ, ζ ∈ X, ξ ≠ ζ and for 
some η1, η2, η3, η4, η5 ∈ [0,1) such that 5

=1 ii
 . Then f has a unique 

ϔixed point. 

Corollary 2.4 

Let X be a complete metric space and let f, g are two 
continuous self-mappings on X satisfying 

1 2 3( ( ), ( )) ( , ( )) ( , ( )) ( , ( ))d f g d f d g d g            

4 5( , ( )) ( , )d f d        (10)

for all ξ, ζ ∈ X, ξ ≠ ζ and for some η1, η2, η3, η4, η5 ∈ [0,1) such 
that 5

=1
1.ii

  Then f and g have a unique ϐixed point.

The existence and uniqueness of a common ϐixed point 
of two mappings that are not necessarily continuous can 
be investigated using our ϐindings by introducing the next 
theorem [13-15]. 

Theorem 2.5 

Let fα1, fα2 be two self-mappings on a complete metric space 
X, satisϔies 

1 2 1 1 2 2 3 2 4 1( ( ), ( )) ( , ( )) ( , ( )) ( , ( )) ( , ( ))d f f f f f f                      

5( , ),  

for all ξ, ζ ∈ X, ξ ≠ ζ and 5

=1
1.ii

  Suppose that fα1 fα2 = fα2 fα1 
is continuous then fα1 and fα2 having a unique common ϐixed 
point in ξ. 

Proof. Take

1 1 2 1 1 1 2 1 1= ( ), = ( ) ( ) ( ), , .n n n n n n n nf f and f f n                    
Therefore, 

2 1 2 1 2 2 2 1( , )= ( ( ), ( ))n n n nd d f f      

1 2 1 2 2 2 1 2 2 1 3 2 2 2 1( , ( )) ( , ( )) ( , (( ))n n n n n nf f f               

4 2 1 1 2 5 2 2 1(( , ( )) ( , )n n n nf        

1 2 2 1 2 2 1 2 3 2 2 4 2 1 2 1= ( , ) ( , ) ( , ) ( , )n n n n n n n n                

5 2 2 1( , ).n n   

So, we have 

2 4 5
2 1 2 2 2 1

2 4

( , ) ( ) ( , ).
1n n n nd d
  

   
  

 


 
                (11)

From (11) we obtain 

2 4 5 2
2 1 2 1 0

2 4

( , ) ( ) ( , ).
1

n
n nd d

  
   

 

 


 
                 (12)

We get 

1 2 1 2 1 1 1 2 11
( )= ( )= ( )= = .lim limn nk kk k

f f u f f u f f u       
 

Let u1 is a ϐixed point of f 1 fα2 such that fα1 fα2 (u1)= u1. Now, 
we must show that fα1 (u1)= u1 and fα2 (u1)= u1. For that we let 

fα1 (u1) ≠ u1 and fα2 (u1) ≠ u1. Then, 

1 1 1 2 1 1 1 1( , ( ))= ( ( ), ( ))d u f u d f f u f u   

1 1 1 2 1 1 2 1 1 1 3 1 1 1 1( ( ), ( ) ( , ( )) ( ( , ( )d f u f f u d u f u d f u f u         

4 1 1 1 1 5 1 1 1( , ( ( ))) ( ( ), )d u f f u d f u u       =0.

Hence, 

u1 is a ϐixed point of fα1. Similarly we can get fα2 (u1)= u1. 
This indicates that fα1 and fα2 have a common ϐixed point in X. 
That was proof of existence. 

As for proving uniqueness, let's suppose u2 ∈ X, u2 ≠ u1 be 
another ϐixed point of f1 and fα2. Then 

1 2 1 1 2 2( , )= ( ( ), ( ))d u u d f u f u 

1 1 1 1 2 2 2 2 3 1 2 2( , ( )) ( , ( )) ( , ( )d u f u d u f u d u f u        

4 2 1 1 5 1 2( , ( ) ( , )d u f u d u u  

3 4 5 1 2=( ) ( , )d u u   

=0.

We have demonstrated a uniqueness and completed proof 
of the theorem. 
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