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Abstract

Iin 2015 we obtained non-hermitian extensions of Heisenberg type and Schrödinger type 
uncertainty relations for generalized metric adjusted skew information or generalized metric 
adjusted correlation measure and gave the results of Dou-Du in 2013 and 2014 as corollaries. In this 
paper, we deϐine generalized quasi-metric adjusted Q skew information for different two generalized 
states and obtain corresponding uncertainty relation. The result is applied to the inequalities related 
to ϐidelity and trace distance for different two generalized states which were given by Audenaert, et 
al. in 2009 and 2008; and Powers-Strmer in 1970. 

2010 Mathematics Subject Classi ication: 15A45, 47A63, 94A17.

Introduction
In quantum mechanics, it is well known that the 

Heisenberg/Schrödinger uncertainty relations hold for 
two non-commutative observables and density operators. 
Dou and Du obtained several uncertainty relations for two 
non-commutative non-hermitian observables and density 
operators in [1,2]. In [3-5] we gave non-hermitian extensions 
of Heisenberg type or Schrödinger type uncertainty relations 
for the generalized metric adjusted skew information or 
generalized metric adjusted skew correlation measure 
which were obtained in Yanagi, Furuichi, and Kuriyama in 
[6]. In this paper, we extend the non-hermitian uncertainty 
relations to q-uncertainty relation and apply them to the trace 
inequalities related to ϐidelity and trace distance for different 
two generalized states given by Audenaert et al and Powers-
Stφrmer in [7-10].

Let ( )Mn   (resp. , ( )n saM  ) be the set of all n×n complex 
matrices (resp. all n×n self-adjoint matrices), endowed with 
the Hilbert-Schmidt scalar product *, = [ ]X Y Tr X Y  . Let 

( ),Mn    be the set of strictly positive elements of ( )Mn  . A 
function : (0, )f    is said operator monotone if, for any 
n , and , ( ),A B Mn    such that 0≤A≤B, the inequality 
0≤f(A)≤f(B) holds. An operator monotone function is said 
symmetric if f(x)=xf(x-1) and normalized if f(1)=1.

De inition 1.1 Let opF  be the class of functions 
: (0, ) (0, )f     satisfying 

(1) =1f , 
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1( ) = ( )tf t f t , 

f  is operator monotone. 

For f opF  deϐine (0) = ( )lim 0f f xx . We introduce the sets 
of regular and non-regular functions 

={ | (0) 0}, ={ | (0) = 0}r nf f f fop op op op  F F F F

and notice that trivially = r n
op op opF F F . In Kubo Ando's 

theory of matrix means one associates a mean to each operator 
monotone function f opF  by the formula 

1/2 1/2 1/2 1/2( , ) = ( ) ,m A B A f A BA Af
 

where , ( ),A B Mn   . By using the notion of matrix means 
we deϐine the generalized monotone metrics , ( )X Y Mn   by 
the following formula 

* 1, = [ ( , ) ],,X Y Tr X m L qR YBAf q f
 

where ( ) = , ( ) =L X AX R X XBBA  and q > 0.

Gener alized Quasi-metric adjusted Q Skew information 
and Q correlation measure

De inition 2.1 Let , rg f opF  satisfy 
2( 1)( )

( )
xg x k
f x


for some k > 0. We deϐine 
2( 1)( ) = ( ) .

( )
xf x g x kg opf x
  F  (2.1)

De inition 2.2 Notation as in Deϐinition 2.1. For
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, ( ),  , ( ),X Y M A B Mn n     and q>0, we deϐine the following 

quantities: ( , ) ( , ) = ( ) ,( ), , ,
g f X Y k L qR X L qR YB BA B q A A f q      

* 1= [ ( ) ( , ) ( ) ]kTr X L qR m L qR L qR YB B BA A Af
   

* *= [ ( , ) ] [ ( , ) ]Tr X m L qR Y Tr X m L R Yg B BA Af
g




, 

( , ) ( , )( ) = ( , ), , , ,
g f g fI X X XA B q A B q , 

( , ) * *( , ) = [ ( , ) ] [ ( , ) ], ,
g f X Y Tr X m L qR Y Tr X m L qR Yg B BA B q A Af

g
 


, 

( , ) ( , )( ) = ( , ), , , ,
g f g fJ X X XA B q A B q , 

( , ) ( , ) ( , )( ) = ( ) ( ), , , , , ,
g f g f g fU X I X J XA B q A B q A B q . 

The quantities ( , ) ( , )( ) and ( , ), , , ,
g f g fI X X YA B q A B q  are said 

generalized quasi-metric adjusted q skew information and 
generalized quasi-metric adjusted q correlation measure, 
respectively. 

Theorem 2.1 (Schrodinger type). For rf opF , it holds 
( , ) ( , ) ( , ) 2( ) ( ) | ( , ) | ,, , , , , ,
g f g f g fI X I Y X YA B q A B q A B q  

where , ( ),  , ( ),X Y M A B Mn n     and q > 0. 

 We use only Schwarz inequality to prove Theorem 2.1 
similarly to the proof of Theorem 2 in [4]. We note the equation

| |= | | ,| | | |=1 =1

n n
L qR q L Ri jBA i j i i j j

         

where = | |,  = | |=1 =1
n nA Bi i i j j ji j         are the spectral

decompositions.

Theorem 2.2 (Heisenberg type) For rf opF , if 

( ) ( ) ( )fg x x f xg     (2.2)

for some ℓ>0, then it holds 
( , ) ( , ) * 2( ) ( ) | [ | | ] | ,, , , ,
g f g fU X U Y k Tr X L qR YBA B q A B q A  

where , ( ),  , ( ),X Y M A B Mn n     and q>0. In particular, 
* 2( [ | | ])A Bk Tr X L qR X  (2.3)

*[ ( ( , ) ( , )) ]g A B f A B
g

Tr X m L qR m L qR X


 

*[ ( ( , ) ( , )) ],g A B f A B
g

Tr X m L qR m L qR X


 

where ( ),  , ( ),X M A B Mn n     and q>0. 

We use reϐined Schwarz inequality to prove Theorem 2.2 
similar to the proof of Theorem 3 in [4].

Trace inequali ties

We assume that 
21 ( 1) (0)( ) = ,  ( ) = (1 ) ,  = ,  = 2.12 2( 1)( 1)

x x fg x f x k
x x

   
   



Then, since (2.1), and (2.2) are satisϐied for g,f,k and ℓ, we 
have the following trace inequality by putting X = I in (2.3). 

2(1 )( [| | ])Tr L qR IBA    (3.1)
2 21 1 1 1[ ] [ ( ) ( ) ] .

2 2
Tr A qB Tr A qB A qB      

   
   

    

This is a generalization of trace inequality given in [8]. And 
also we give the following new inequality by combining the 
Chernoff-type inequality with the above theorem.

Theorem 3.1 We have the following: 

1 1[ | | ] [ ( ) ]inf2 0 1
Tr A qB L qR I Tr A qBBA

 


   
 

11/2 1/2 1 1[ ( ) ] [ ( ) ( ) ]
2

Tr A qB Tr A qB A qB      

21 2[ ] (1 )( [| | ) .
2

Tr A qB Tr L qR IBA  
 
 

    

We need the following lemma in order to prove Theorem 
3.1.

Lemma 3.1 Let 1( ) = [ ( ) ]s sf s Tr A qB  for , ( ),  0 1A B M sn    
and q > 0. Then f(s) is convex in s. 

Proof of Lemma 3.1.

 
' 1 1( ) = [ log ( ) ( ) log ]s s s sf s Tr A A qB A qB qB   . And then 
' 1 2 1( ) = [ (log ) ( ) log ( ) log ]s s s sf s Tr A A qB A A qB qB  

1 1 2[ log ( ) log ( ) (log ) ]s s s sTr A A qB qB A qB qB  

1 2 1= [ (log ) ( ) ] [ log log ( ) ]s s s sTr A A qB Tr A A qB qB 

1 1 2[log log ( ) ] [ (log ) ( ) ]s s s sTr qB AA qB Tr A qB qB  

1= [ log (log log )( ) ]s sTr A A A qB qB 

1[ (log log )log ( ) ]s sTr A A qB qB qB 

1= [ (log log )( ) log ]s sTr A A qB qB A 

1[ (log log )log ( ) ]s sTr A A qB qB qB 

1= [ (log log )( ) (log log )]s sTr A A qB qB A qB  

(1 )/2 (1 )/2= [ (log log )( ) (log log ) ] 0.s ssTr A A qB qB A qB A   

Then f(s) is convex in s.

Proof of Theorem 3.1. The third and fourth inequalities 
follow from Lemma 3.1 and (3.1), respectively. So we may only 
prove 

1[ | | ] 2 [ ( ) ] (0 1).Tr A qB L qR I Tr A qBBA
       

Let 
= | |= | | |,

,
A i i i i i i j ji i j

          

= | |= | | | .
,

B j j j j i i j jj i j
          
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Then we have 
2 2[ ] = | | | , [ ] = | | | .

, ,
Tr A Tr Bi i j j i ji j i j

         

And since 

| |= | | ,| | | |,
L qR q L Ri jBA i j i i j j

        

we have 

| | = | || | | .
,

L qR I qi j i i j jBA i j
        

Then we have 

2[| | ] = | || | | .
,

Tr L qR I qi j i jBA i j
      

Therefore 

2[ | | ] = ( | |) | | | .
,

Tr A qB L qR I q qi j i j i jBA i j
            

On the other hand since 

= | |= | | |,
,

A i i i i i i j ji i j
            

1 1 1= | |= | | |,
,

B j j j j i i j jj i j
              

we have 

1 1( ) = ( ) | | | .
,

A qB qi j i i j ji j
           

Then 

1 1 2[ ( ) ] = ( ) | | | .
,

Tr A qB qi j i ji j
         

Thus 
12 [ ( ) ] [ | | ]Tr A qB Tr A qB L qR IBA

     

1 2= {2 ( ) ( | |)}| | | .
,

q q qi j i j i j i ji j
              

Since 12 ( ) ( | |) 0x qy x qy x qy        for , > 0,0 1x y    
and q>0 in general, we can get the result.

Remark 3.1 There is no relationship between [| |]Tr A qB  
and [| | ]Tr L qR IBA  . For example, let 

3 1
8 02 2= , =
0 21 3

2 2

A B

 
   
        
 

and 
1=
2

q  Then [ | ] = 3Tr L qR IBA   and [| |] = 10Tr A qB . 

On the other hand, let 

13 7 1 0
2 2= , = 57 13 0

22 2

A B

                

And q=2. Then [| | ] = 8Tr L qR IBA   and [| |] = 58Tr A qB . 
Then Theorem 3.1 and trace inequality given by Audenaert et 
al and Powers-Stφrmer have no relationship. 

Conclusion

We gave a non-hermitian q uncertainty relation and  apply 
to the trace inequalities related to ϐidelity and trace distance 
for different two generalized states.
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