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Abstract

The external force in the relativistic equation of motion can be separated into two components: 
Fr and Fp. The ϐirst is expressed by the physical force divided by the square of the relativistic 
Lorentz factor, i.e γ2. This force dominates for non-relativistic velocities and vanishes for velocities 
approaching the speed of light c. On the other hand, the second term increases from zero with 
increasing velocity and dominates for velocities close to c. It is then a purely relativistic component. 
The characteristic feature of this component is its zero power, Fp ⋅ v = 0, but it is responsible for the 
relativistic precession. The effect was conϐirmed by numerical solutions of the equation of motion. 
Relativistic formulas for the precession frequency for point objects moving in selected ϐields of central 
forces were also derived analytically. It has been shown that for weak gravitational interactions, the 
correction for relativistic precession is small, negligibly small for Earth, and relatively small, though 
measurable, for Mercury. In turn, for the microworld and electrostatic forces (e.g., for the hydrogen 
atom), relativistic precession can fundamentally affect the movement of the electron.

Introduction
The relativistic equation of motion takes the form:

d  

d
m

t 


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v F v
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Where α is the linear energy-mass ratio and for vacuum is 
α = c2, where c is the speed of light in a vacuum. This equation 
is derived both within special relativity theory (STR) [1] and 
within a recently proposed theory based on the assumptions 
of equivalence of mass and energy and the classical equation 
of motion of systems with variable mass [2-4]. 

When deriving Equation (1) we use the commonly known 
relation of relativistic mass and energy as follows:

E = mc2                                (2)

The relation (2) is conϐirmed experimentally and causes 
the mass of a relativistic object to increase with its energy and, 
thus, with the speed of motion. So, we are dealing with objects 
of variable mass. On the other hand, the classical equation 
of dynamics for systems with variable mass reduces to the 
following equation: 

d

dt


p
F                         (3)

which results from the Meshchersky equation (also known 
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as the rocket equation) written for the laboratory (LAB) 
system, in which the increasing relativistic mass rests [2]. 

A good classic analogue of Equation (3) is a barge pulled 
by force F, onto which the sand is falling from above at a zero 
horizontal velocity. The same applies to the description of the 
movement of a barge, which increases its mass by taking in 
water. Under this new theory, c is the critical speed for any 
object, including light, traveling in a vacuum.

As has been shown [3], starting with equations (3) and (2) 
and using the deϐinition of the power supplied to a moving 
system, we arrive at equation (1). The solution of Equation (1) 
for the velocities < c, is the relativistic relationship between 
mass and energy expressed by the following formulas [1]:
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Relation (4) is sufϐicient to derive all relations known in 
special relativity [e.g., 5]. The γ factor is a commonly used 
relativistic factor equal to
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Summing up this short introduction, we can treat 
Equation (1) as the result of applying STR or writing the 
equation of dynamics for an object with variable mass, which 
is proportional to the total energy of this object. These two 
approaches lead to identical equations of motion for objects 
moving at subluminal speeds. The ϐirst approach requires the 
additional assumption that the speed of light is constant and 
not to be exceeded and that it takes the value of c in vacuum. 
The second approach treats c2 as a proportionality constant 
between mass and energy. c itself is, in turn, a critical value 
for the speed to which a particle, including light, can approach 
arbitrarily. For a velocity approaching c, both the object's 
energy and its mass are singular and tend to inϐinite values.

A good solution may be the postulative adoption of 
Equation (1) as a relativistic equation of dynamics without 
additional assumptions about the constant c. The extensive 
collection of solutions to Equation (1) includes all cases 
described by STR as well as those additional characteristics 
for systems with variable mass.

In the following, we will use Equation (1) to describe 
the phenomenon of precession, which is closely related to 
the relativistic description of motion. One of our goals is to 
reproduce the result of perihelion advance for Mercury. 
However, to our knowledge, precession was not fully 
associated and explained with special relativity, occurring 
only in general relativity [6-12]. The famous experimental 
veriϐication of Einstein’s general relativity theory was to 
conϐirm an additional contribution to the orbit (perihelion) 
precession of Mercury [13]. In the second half of the 
twentieth century, several of the so-called post-Newtonian 
gravity theories tried to obtain the exact result of Mercury's 
precession rate. Many attempts focused on introducing a 
'relativistic' gravitational potential to the Lagrangian of the 
system (making the potential similar to what is known in 
general relativity) [14,15]. In [16] the notion of relativistic 
momentum was used, which reproduced only 1/6 of the 
observed precession. In [17,18] the concept of cogravity was 
used to explain general relativity phenomena without using 
general relativity. Different approaches to relativistic mass 
(assumed to act as gravitational mass) appeared in [19,20]. 
Derivations including gravitational and rotational time 
dilation effects (special relativity effect) in the Schwarzschild 
metric (general relativity quantity) appeared to reproduce 
the precession up to the same precision rate as known in 
general relativity itself [16,21,22]. The full correctness of the 
approaches brieϐly discussed above is under debate. We show 
that the precession is the result of STR itself. For simplicity, 
we will deal with the description of motion for the simplest 
object, which is a material point placed in the ϐield of central 
forces. It was also very recently shown that the precession 

effect appears purely in Newtonian physics of planetary 
motion, after including the effect of planet mass in the two-
body problem, and for Mercury, the prediction meets the 
exact value surprisingly well [22]. The prediction falls down 
for other planets because multi-body interaction needed to 
be included. In our paper, the effect of the mass of Mercury 
is neglected. We manage to reproduce 1/3 of the precession 
predicted by general relativity.

We also show how large the precession effect is for 
microworld particles, like an electron in a hydrogen atom. 
We show that directly from the relativistic equation of motion 
(in special relativity) the effect of precession emerges. We do 
not include by hand other effects, like time dilation or special 
design of the interaction potential. To our knowledge, it is a 
unique result. Analytical and numerical results were obtained 
for the gravitational force. Earth and Mercury orbiting the 
Sun, and electrostatic force: electron in hydrogen atom.

Precession equation for a point object

Using vector relations, the dynamics equation (1) can be 
written in the form [4]:
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where: 
2/r F F                           (6)
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                         (7)

The force Fr is a relativistically renormalized real force F. 
The ratio of the two forces depends on the speed of the body. 
For small velocities, the force Fr is equal to the force F and 
the description of the motion is fully classical, while the force 
Fp is negligibly small. For relativistic velocities, the value of 
the force Fr decreases and its signiϐicance for the description 
of motion becomes negligibly small. If the force F is a central 
force, e.g. gravitational or electrostatic, then under its inϐluence 
the classical trajectory of a spatially limited motion is a circle 
or an ellipse. For circular motion, the components Fr and Fp 
are parallel to each other. The appearance of the parameter γ2 
introduces the dependence of the force on the velocity, which 
results in the instability of the orbit. The movement takes 
place in one plane with the characteristic torsion of the orbit, 
orbit precession.

In turn, Fp is a vortex force that does not supply power to 
the system because it is always perpendicular to the velocity 
vector, v, but is responsible for the phenomenon of precession. 
In addition, this force component depends on the speed, which 
causes characteristic blurring of the orbit. For velocities 
approaching c, the force Fr disappears, and the force Fp leads 
to simple stable solutions in the form of circular or rectilinear 
motion. For intermediate speeds, there is a combination of 
many forms of motion, whose description is very complicated. 
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In total, in the orbit plane, the blurring of orbits is clearly 
visible in numerical solutions for the sum of the forces Fr+ 
Fp, but this case is not the subject of the presented work. 
Our interest is orbital precession caused by the force Fp, the 
importance of which increases with the increase in particle 
velocity at the expense of motion governed by the decreasing 
force Fr. The motion of the body transforms from an elliptical 
motion to a circular motion. The equation of motion in this 
approximation takes the form: 

d ( )
p 2d

m
t c

 
  

v v v F
F                        (8) 

This can also be written in the following form:
d

 p
dt

 
v

v                            (9)

Where ωp is the angular frequency vector (its value acts as 
precession’s frequency), and is equal to:

p 2



mc

v F
                         (10)

During this phenomenon, the force Fp does not do work, 
so the kinetic energy is conserved, and the velocity of the 
body does not change its value. Equation (9) is the classical 
equation for the precession of the velocity vector, and the 
angular precession frequency is given by Equation (10).

Selected examples of angular precession motion for 
central forces acting on point objects

The best-known example of the precession force is 
the Lorentz force of the magnetic ϐield acting on a moving 
charge. As was shown in [3], to derive the magnetic force, 
the relativistic dynamics equation (1) should be generalized 
to the case of moving force sources (e.g., electrons moving in 
a conductor with an electric current; velocity of the moving 
force source is denoted v0):

 d
0 2d

m
t c
     

v v
F F v v                     (11)

and then the part of the precession force Fp depending on 
the density of electric current carriers should be separated. 
The obtained equations allow one to deϐine the magnetic ϐield 
originating from the resultant electric ϐield, which is the sum 
of two competing components: one from moving electrons 
and the other from positive ions resting in the LAB system (for 
details, see [3]). The resulting magnetic ϐield is then given by 
the formula:

2c

 
v EeB                     (12)

where ve is the velocity of moving electrons, and E- is the 
electric ϐield generated by the electrons in a conductor. This 
spectacular phenomenon of the formation of a magnetic ϐield 
from the superposition of electric ϐields is dominant in the 
case of electric ϐield zeroing in the LAB system.

In the following, we present some less spectacular 

occurrences of precession phenomena for both gravitational 
and electrostatic central forces. This time, the relativistic 
effects of the precession force are only a correction to the 
classical gravitational or electrostatic interactions.

In the case of the gravitational ϐield, an unstable solution 
appears related to the precession of the orbit, which changes 
its periapsis (perihelion for the Solar System), but the position 
of the orbit itself remains in a plane perpendicular to the 
constant angular momentum vector. For the planets of the 
solar system, the relativistic precession is very small, and 
mostly it is only a minor correction to the classical precession 
associated with the multibody interaction or the size of the 
planet and its nonsphericality [7-12].

An example of the movement of the planet in a 
gravitational fi eld

The strength of the gravitational ϐield for a circular orbit is 
given by Newton's formula:

2
Mm

F G
r

                      (13)

This force is perpendicular to the velocity: vF v F  and 
the period of motion 2 /T r v , which gives the expression 
for the precession angular frequency after substituting for 
Equation (10):

24
p 2 2

GM

vc T


                          (14)

Formula (14) can be used to calculate the precession 
angular frequency for planets, as will be shown for Earth 
and Mercury in the following examples. In Figures 1 and 2 
the results of numerical calculations for the central force are 
shown. From Figure 1 we see how important the precession 
component of the external force becomes with increasing 
velocity of an object. In our simulation we varied the speed 
of light, c, and two examples are shown for c=300,000 km/s 
in subϐigures (a)-(b) and c=100 km/s for subϐigures (c)-(d), 
whereas the actual velocity of an object remained constant 
and equal to the real orbital velocity of Moon in perigee, 
which is 1.089 km/s. For low velocities, we observe a very 
large discrepancy of Fr and Fp of 11 orders of magnitude 
(subϐigure (a)), what results in no orbit’s precession, as shown 
in subϐigure (b) – angle of the orbit’s axis varies by a negligible 
amount in time. The situation is drastically different for high 
velocities (subϐigures (c)-(d) for the ratio, v/c ≈ 0.01), where 
the discrepancy in force’s components is relatively small (4 
orders of magnitude), and orbit’s precession is evident. In this 
case, it is about 3 ⋅ 105 days. 

Similar conclusions can be drawn from Figure 2. Here, 
results of numerical simulations of the motion of a point 
mass in a central force ϐield from a point source mass on an 
elliptical orbit are shown. The starting velocity and periapsis 
radius are chosen arbitrarily and reϐlect no physical system. 
From Figure 2 we see that the orbit’s precession emerges 
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only due to the Fp component of the central force. If only Fr 
component is included in the simulation, the stable elliptical 
orbit is only seen with no precessional motion. Only including 
two components can result in an orbit’s precession. For better 
clarity, the orbit’s shape is highlighted in red for the ϐirst 3 
revolutions. These two examples in Figures 1 and 2 show how 
much the Fp component of the central force is responsible for 
the emerging orbit’s precession.

Precession of orbital precession for earth

To estimate the precession of the Earth, we insert the 
following values into equation (14): M = 2 ⋅ 1030 kg (solar 
mass), T = 365 days = 3.15 ⋅ 107 s, v = 29.78 km/s ≈ 3 ⋅ 104 m/s 
(average speed of the Earth in orbit around the Sun).

Inserting the above data into (14) we get the Earth's 
precession period of 100 million years, which is much too 
much compared to the observation result of 26,000 years. 
Therefore, the approximation of the point mass for Earth leads 
to an insigniϐicant relativistic correction. The nonspherical 
shape of Earth and interactions with both the Moon and 
the Sun are responsible for the phenomenon of classical 
precession.

Figure 2: Results of numerical simulations of motion of a model system: point mass in 
central force ϐield from point source mass on an elliptical orbit. The starting position 
and velocity vectors are: r0 = (0.2,0) [a.u.] (apoapsis), v0 = (0,0.8 c) [a.u.]. We observe 
the orbit’s precession, for which the Fp component is responsible. The direction of 
precession is in the direction of the velocity vector.

(a)

 

(b)

 
(c)

 

(d)

Figure 1: Results of numerical calculations for a gravitational system: point object with the mass of Moon orbiting around a source object with the mass of Earth on a lunar orbit, 
with the initial speed and distance given for a periapsis at two different values of the speed of light (two different v/c ratios): (a) - (b) c=300,000 km/s and (c)-(d) c=100 km/s. 
(a) and (c): two components of force (Fr in red, and Fp in blue); (b) and (d): cosine of a rotation angle of perihelion precession. For an increasing speed of an object (decreasing 
a value of c in numerical calculations), component Fr indeed decreases, while component Fp signiϐicantly grows. Meanwhile, a perihelion’s precession is negligible for low speed, 
and it becomes substantial for larger speeds (in (d) a period of precession is about 300,000 days).
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Mercury’s precession

For Mercury, the effect of relativistic precession is more 
visible. In the calculations, a signiϐicantly larger eccentricity 
compared to a circular orbit should be considered. However, 

if we approximate the formula for force by: 2
av

GMm
F

r
 , where 

rav is related to the period and average velocity on the orbit 

(
2 av

av
r

v v
T


  ), we conclude with the following formula for 

the angular precession frequency:
2 

p 2
av

GM

c r T



                          (15)

and the formula for the advance of the perihelion 
(measured as the advance angle per revolution):

2  
p 2

av

GM
T

c r


                           (16)

Following the assumption on an average radius of rav to be 
equal  21a e , where a is the major half-axis of the ellipse with 
eccentricity e, the formula is identical to the known Einstein 
formula (resulting from considerations of general relativity 
theory), up to factor 3 in the numerator (in Einstein’s formula 
we ϐind 6π in the numerator) [6-12]. A quantity  21a e
is called a semi-latus rectum, and for Mercury we have: 
e = 0.206 and a = 0.579 ⋅ 1011 m [23], which gives the advance 
of the perihelion resulting from general relativity a famous 

0.104"GR   per revolution (it is about 43" per century), 
conϐirmed up to a high precision by recent results [24]. For 
simplicity of assumptions (point masses, circular orbits) and 
simplicity of calculations, the result is quite satisfactory.

Precession of electron in hydrogen atom·

We assume for a ground state: orbit’s radius r1 = 0.53 · 10-10 
m, v1 = 2.2 · 106 m/s. The force of an interaction between an 
electron and a proton is then (assuming a circular orbit): 

2 2 8/ (4  ) 8.2 10  N 1 0 1F e r                       (17)

And the angular precession frequency:

121 1 2.2 101 2  1 /
el

s
v F

m c
                        (18)

Note that the angular frequency of the electron's own 
rotation in the ϐirst orbit (according to Bohr’s model) is ω0 = 

4.15·1016 1/s, which gives a ratio ω1/ω0 ≈ 0.53 · 10-4. This ratio 
for Earth is 4 orders of magnitude smaller and equals ~10-8.

The calculations presented are based on the dynamics 
equation (1), which is valid both in the four-dimensional 
theory of special relativity and in the alternative theory based 
on the classical equation for systems with variable mass in 
3D, supplemented with a linear relationship between mass 
and energy. The independence of the dynamic equation (1) 

from the assumptions of the adopted model increases its rank 
and increases its importance for the description of reality. 
All subsequent calculations are a consequence of simple 
transformations in real space.

Conclusion
This paper presents a derivation of the formula for 

the frequency of orbital angular precession in the ϐield 
of central forces. The point-mass assumption was made, 
which signiϐicantly simpliϐies the calculations and narrows 
the problem down to purely relativistic effects. Classical 
components, such as deviation from the sphericity of the 
object (quadrupole moment, leading also to the nutation 
phenomenon), or the inϐluence of moments of forces resulting 
from interactions with neighboring objects (perturbations), 
were omitted.

Based on the division of each external force into two 
components (Fr and Fp) it is easy to show that the force 
component Fr is a modiϐied external force with a relativistic 
factor γ-2. The dependence of the relativistic component Fr 
on velocity causes the precession of the shape of the classical 
orbit, but the orbit for the central force remains in one plane 
because the moment of the central force is equal to zero. 
Experimental observation leads to perihelion precession in 
plane motion around the Sun.

In turn, the Fp component, although it does not affect 
the energy change, has a direct inϐluence on the precession 
phenomenon. The most spectacular action of this force is the 
appearance of a rotating magnetic ϐield around a current-
carrying conductor, as shown in our previous works. Another 
example is the relativistic precession of the velocity and orbit.

Relativistic precession is small for gravity ϐields and 
usually disappears in the classical corrections related to the 
asymmetry of the object (e.g., nutation) or the disturbance of 
the centrality of the interaction, including by other neighboring 
objects. For Earth, the period of purely relativistic precession 
goes back millions of years and is very difϐicult to observe 
against the background of much faster classical precession. 
The proportion of relativistic precession to the frequency of 
natural turns is in the order of 10-8 and its inϐluence on the 
rotation is very small. It looks better for Mercury, where the 
value of the relativistic correction for the point mass is 3 times 
lower than that resulting from the general relativity theorem. 
Our analytical results are in line with many other attempts 
made “outside” the general relativity.

Much shorter precession times are observed for an 
electron in a hydrogen atom. Here, the precession period is 
at the level of 10-12 s, which may have a signiϐicant impact on 
the formation of spatial orbitals. The ratio of the precession 
frequency to the natural rotation frequency is on the order of 
10-4 and is 4 orders of magnitude higher than in the case of the 
planetary system. Hence, there is a difference in the motion of 
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the planets with respect to the motion of the electrons in the 
atom. While for the planets (due to the long period of rotation 
in the orbit) it is only a small correction and the movements 
of the planets are basically ϐlat, for the electrons it becomes 
the dominant effect, and the relativistic correction essentially 
corrects the movement of the electron. Thus, the relativistic 
corrections for atoms fundamentally modify the description 
of the motion of microscopic objects.

We believe that the results of our work can show how 
observations known from special and general relativity can 
be concluded from classical mechanics with fair justiϐication 
and accuracy. The orbit’s precession, for which the precession 
component of the external ϐield is responsible based on 
our studies, in general relativity is obtained by including a 
velocity-depending potential term in the Lagrangian. In our 
classical-mechanical studies, the reasoning is similar. This 
brings us to the conclusion that the formulas we obtained 
and the concepts behind them can also contribute to the 
understanding of relativistic phenomena based on classical 
mechanics. In future applications of our methodology, we can 
consider the coherent picture of electromagnetism, Lorentz 
transformations of the electric and magnetic ϐields, or perhaps 
even the quantum-mechanical behavior of electrons in atoms.
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