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1. Introduction
Quantum ϐluctuations are one of the most profound and 

fundamental consequences in quantum physics and stand 
as a pillar in understanding the behavior in the smallest and 
largest parts of the universe. They arise from the fundamental 
uncertainties that are encoded in the principles of quantum 
mechanics, such as Heisenberg’s uncertainty principle, 
according to which it is impossible to measure or know certain 
pairs of physical properties, such as position and momentum 
or energy and time, with arbitrary precision simultaneously. 
This inherent ”fuzziness” of the quantum world gives rise to 
temporary and spontaneous changes in the energy or state of a 
system, even in what we perceive as space [1-7]. At the heart of 
quantum ϐluctuations lies the concept of the quantum vacuum, 
a state that is far from being truly ”empty.” Unlike the classical 
notion of a vacuum as a complete void, the quantum vacuum 
is a dynamic sea of virtual particles constantly appearing and 
annihilating, a direct consequence of quantum ϐield theory.

These ripples take the form of temporary violations of 
classical energy conservation, allowed by the uncertainty 
principle, and play a critical role in determining the nature 

of reality. These are not just abstract ideas but have profound 
physical consequences, from the forces between particles to 
the structure of spacetime itself. Quantum ϐluctuations are at 
the heart of many of the most important phenomena in physics 
[5]. For example, they provide the underlying mechanism for 
the Casimir effect. In cosmology, quantum ϐluctuations during 
the inϐlationary epoch of the early universe were stretched 
to macroscopic scales, seeding the formation of large-scale 
structures such as galaxies and galactic clusters [8]. They 
are responsible for Hawking radiation in black hole physics, 
wherein the particle-antiparticle pairs created near the event 
horizon result in the emission of radiation. The above examples 
indicate that quantum ϐluctuations are quite universal across 
vast domains of physics. Quantum ϐluctuations form a subject 
of study bridging across quantum ϐield theory, general 
relativity, thermodynamics, and condensed matter physics.

They come forth as quantum ϐield theory perturbations 
around the vacuum state, the ϐluctuations are always 
probabilistic; the correlation functions quantify the statistical 
relationships between the values of ϐields at different 
space-time points [9,10]. This statistical treatment predicts 
measurable effects but also offers insights into the interplay 
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between quantum mechanics and classical phenomena. 
Cosmologically, quantum ϐluctuations are responsible for the 
very fabric of the observable universe.

Quantum ϐluctuations in the scalar ϐield driving inϐlation 
during the inϐlationary phase of the early universe were 
ampliϐied and stretched to astronomical scales. These 
ϐluctuations, frozen as density perturbations, eventually 
led to the formation of galaxies and other cosmic structures 
observed today. The anisotropies in the Cosmic Microwave 
Background (CMB) [2], the relic radiation from the Big Bang, 
are direct imprints of these primordial quantum ϐluctuations, 
providing one of the most compelling pieces of evidence for 
their existence. They are integral to our current understanding 
of vacuum stability and the spontaneous symmetry breaking 
that controls fundamental forces and particle behavior. Despite 
their pervasive inϐluence, quantum ϐluctuations remain a 
deeply enigmatic and profoundly intriguing topic in theoretical 
physics. They challenge classical intuitions about the nature of 
energy, space, and time, and force us to rethink fundamental 
concepts like causality and locality. Experimental evidence, 
such as the precise measurements of the Casimir force, the 
detection of vacuum polarization effects, and the observations 
of the CMB anisotropies, have conϐirmed their theoretical 
predictions to remarkable accuracy, solidifying their status as 
a cornerstone of modern physics. As we continue to probe the 
quantum realm, quantum ϐluctuations remain at the frontier 
of many unresolved questions.

We will be particularly studying the theoretical foundation, 
mathematical descriptions, and the physical implications 
of quantum ϐluctuations that play a key role in large-scale 
structure formation.

2. Th eoretical framework
The large-scale aggregation of matter in the universe, 

known as gravitational clustering, originates from primordial 
quantum ϐluctuations during inϐlation [11]. These quantum 
ϐluctuations become seeds for density perturbations, which 
later evolve under gravity to form cosmic structures such 
as galaxies, clusters, and the large-scale cosmic web. A 
robust theoretical approach to describe these phenomena 
is the Mukhanov-Sasaki formalism [2,3], which connects 
quantum ϐield ϐluctuations during inϐlation to the curvature 
perturbations that later drive gravitational clustering through 
power spectrum P(k) and two-point correlation function ξ(r).

2.1 Quantum origins of density perturbations

Density perturbations, the seeds for the formation of 
cosmic structures such as galaxies and galaxy clusters, are 
seeded by quantum ϐluctuations of the inϐlaton ϐield during the 
inϐlationary epoch [12]. The rapid expansion of the universe 
stretches these ϐluctuations out, turning microscopic quantum 
phenomena into macroscopic density variations and later into 
various manifestations of the observable universe.

2.2 The in laton ield

Inϐlation, a period of exponential expansion in the early 
universe, is driven by a scalar ϐield called the inϐlaton ϐield 
ϕ. The inϐlaton ϐield’s potential energy dominates during 
this epoch [13], leading to the accelerated expansion of 
spacetime. The ϐield ϕ is treated as a quantum ϐield with small 
perturbations superimposed on a homogeneous background 
[1]

ϕ(x,t) = ϕ0(x,t) + δϕ(x,t)                  (1)

where ϕ0 is the spatially homogeneous background ϐield.

δϕ(x,t) represents quantum ϐluctuations.

The inϐlaton ϐield and its conjugate momentum obey the 
celebrated Heisenberg’s Uncertainty principle:

4
h 


                         (2)

This means that the inϐlaton ϐield cannot be homogeneous; 
rather, it suffers inevitable quantum ϐluctuations. These are 
ϐirst conϐined to sub-horizon scales and therefore behave like 
the quantum theory dictates.

The evolution of the inϐlaton ϐield is described by the Klein-
Gordon equation in an expanding universe [14]:

3 0dVH
d

 


     (3)

Where, aH
a


  is the Hubble parameter.

V (ϕ) is an inϐlation Potential that governs the behavior of 
the inϐlation ϐield and the dynamics of inϐlation.

2.3 Slow-roll approximation

During inϐlation, the inϐlaton ϐield evolves slowly due to 
the dominance of the potential energy V (ϕ) over the kinetic 
energy ϕ2. This is known as the slow-roll approximation, 
where the following conditions are satisϐied:
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Where, ϵ is the ϐirst slow-roll parameter, controlling the 
rate of change of the Hubble parameter.

η is the second slow-roll parameter, controlling the 
curvature of the potential. Mp is the reduced Plank mass.

Under the Slow-Roll approximation the second term 
dominates over the ϐirst term hence the equation of motion is 
reduced to;

3 0dVH
d




                          (6)

This indicates that the ϐield’s motion is primarily driven by 
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the potential, and the acceleration of the ϐield is small [15]. 
The scale factor a(t) of the universe grows exponentially 
during inϐlation. The Hubble parameter H is approximately 
constant, therefore universe expands exponentially, with the 
scale factor growing as:

a(t) ∝ eHt                     (7)

The slow-roll approximation is crucial in inϐlationary 
models because it allows for an analytic understanding 
of the inϐlationary phase. Predictions related to isotropy, 
homogeneity, and the CMB anisotropies.

2.4 Mukhanov-sasaki formalism

To study the effects of primordial quantum ϐluctuations 
regarding the large-scale structure formation we introduce 
a Mukhanov-Sasaki variable vk, which describes the quantum 
perturbations of scalar inϐlaton ϐield in a gauge-invarant 
manner, the variable may be deϐined as;

v ak H
 

 
  

 


                      (8)

Where ψ is a scalar metric perturbation.

The evolution of vk is governed by the famous Mukhanov-
Sasaki equation;

2 0zv k vk kz
    
 

                        (9)

Where,

0a
z

H





1

k is the comoving wavenumber.

2.5 Evolutionary stages

2.5.1 Sub-horizon scale: In this regime (k ≫ aH) where 
k2 dominates and the equation of motion approximates the 
simple harmonic oscillator as;

1Dots over z denote derivatives with respect to conformal 
time.

2 0k kv k v                      (10)

These modes oscillate with a frequency proportional to 
k. The equation has a corresponding oscillatory solution, 
deϐining the quantum vacuum ϐluctuations in Bunch-Davies 
Vaccum,

vk ∝ e±ιkη                   (11)

2.5.2 Super-Horizon scale: In this regime (k ≪ aH) where 
z
z


 dominates and the equation of motion is reduced to;

0zvk z
 
      (12)

In this regime the amplitude of perturbations freezes, 

thereby preserving the information about perturbations. 
Hence the perturbations become nearly constant and the 
solution approximates;

vk ∝ Constant                   (13)

2.5.3 Relation between Mukhanov-Sasaki variable and 
curvature perturbation: The curvature perturbation ζk is a 
gauge-invariant quantity that describes the spatial curvature 
of comoving hypersurfaces, it becomes constant on super-
horizon scales therefore used for tracking the evolution of 
density perturbations. Hence deϐined as;

qHk P
 


  


                      (14)

Where ψ is the curvature perturbation.

ρ and p are the energy density and pressure.

δq is the momentum perturbation.

The statistical properties of vk directly determine those of 
ζk as the two quantities are related as; 

Where,

vk
k z

                       (15)

a
z

H
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                      (16)

0
  is the background inϐlaton ϐield’s time derivative.

a is the scale factor.

aH
a




 is the Hubble parameter.

3. Statistical properties of density perturbations
The statistical properties of density perturbations are 

crucial for understanding the formation of large-scale 
structures in the Universe. These perturbations, which arise 
from tiny ϐluctuations in the distribution of matter and 
energy in the early Universe, evolve under the inϐluence of 
gravitational instability, leading to the formation of galaxies, 
clusters, and larger-scale structures. The concept of Jeans 
instability describes the conditions under which small density 
ϐluctuations in a self-gravitating ϐluid will grow rather than 
damp out. This criterion is applied to a gas of particles (or 
ϐluid), where gravity competes with other forces (e.g., thermal 
pressure). The Jeans criterion provides the minimum mass of 
a perturbation that can collapse under its gravity. If the mass of 
a region of gas exceeds the Jeans mass, the region will undergo 
gravitational collapse. For instance, in the early Universe, 
smaller regions of high density began to collapse into dark 
matter halos, later attracting baryonic matter to form galaxies 
and galactic clusters [16].
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3.1 Power spectrum and two-point correlation function

The power spectrum is a measure of the distribution 
of power (or variance) of ϐluctuations in a ϐield, such as the 
density contrast, as a function of spatial scale [9]. It is usually 
used in Fourier space to describe how different spatial scales 
contribute to the total variance of the ϐield. It is the Fourier 
transform of the two-point correlation function and gives 
insight into the distribution of density ϐluctuations across 
different wavenumbers k.

In Fourier space, the density contrast δ(x) is written as a 
sum over modes with wavenumber k

3
( ) ( )3(2 )

d k ikxx k e 


                     (17)

The power spectrum P(k) is deϐined as the average squared 
amplitude of these Fourier components:

2( ) | ( ) |P k k                      (18)

The value of k determines the spatial scale like galaxies, 
galactic clusters, ϐilaments, and the cosmic-web. The power 
spectrum and the two-point correlation function are related 
through the Fourier transform:

( ) sin 2( ) 22
P k krr k dk

kr
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Where ξ(r) is the two-point correlation function that 
measures the degree of correlation between the density 
contrasts at two points in space [17]. It quantiϐies how similar 
the density is at two different locations separated by a distance 
r Figure 1.

The two-point correlation function ξ is deϐined as:

( ) ( )
( ) 2

x x r
r

 
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
                 (21)

The two-point correlation function is often used to 
describe the clustering of galaxies or dark matter [18]. A 
higher value of ξ(r) at a given separation r means that there 
is a greater tendency for matter (or galaxies) to be clustered 
at that separation. Since the phenomenological logarithmic 
form is the better ϐit for the transition from linear to nonlinear 
clustering regimes, we will be using it as;

0

( )
1 ( / )

Ar
ln r r

 


                   (22)

Where,

A determines the amplitude of clustering.

ro is the characteristic scale that determines the transition 
point.

This form is a phenomenological model used to describe 
clustering in certain regimes, especially when the correlation 
weakens gradually over distance. The logarithmic dependence 
ensures a slower decay compared to a power law or 
exponential. Thereby logarithmic decay implies a smooth 
transition from strongly clustered scales to weakly clustered 
scales [19], making it suitable for intermediate-to-large scale 
analysis in cosmology as 1;

The power spectrum is easier to compute in Fourier 
space while the correlation function is easier to visualize in 
real space [17]. It is sometimes convenient to express the 
power spectrum in dimensionless form, as the variance per 
logarithmic interval in k;

2
2 3( ) ( )

d
k k P k

dlnk


                     (23)
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

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This formulation gives more intuitive meaning to the power 
spectrum than just P(k), which is the functional representation 
of power per unit volume in kspace. For example ∆2(k) = 1 
means there are order unity density ϐluctuations from modes 
in the logarithmic bin around wavenumber [20] k.

In ΛCDM (Lambda Cold Dark Matter model) the initial 
power spectrum of density ϐluctuations is nearly scale-
invariant, which means that ϐluctuations were almost equally 
strong at all spatial scales. The power spectrum is often 
represented as:

P(k) ∝ kns                         (25)

Where k is the wavenumber of ϐluctuations.

ns is the spectral index.

The primordial spectrum, especially from inϐlationary 
models, predicts that the ϐluctuations are nearly scale-invariant, 
with a spectral index ns ≈ 1(HarrisonZeldovich spectrum). 

Figure 1: Two-Point Correlation Function ξ(r) as a function of separation distance 
r(in Mpc). The graph shows how clustering strength decreases with increasing 
distance, highlighting larger-scale weak clustering and stronger clustering at smaller 
scales. This function provides insights into the spatial distribution of matter in the 
universe.”Source:-This ϐigure was generated by using python and matplotlib”.
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This scale-invariant spectrum is modiϐied over time by the 
expansion of the Universe, gravitational collapse, and dark 
energy. The transfer function is used to modify the primordial 
power spectrum to account for these effects, yielding the 
matter power spectrum observed today. As the Universe 
expands, different cosmological epochs (radiation-dominated, 
matter-dominated, dark energy-dominated) inϐluence the 
growth of ϐluctuations. In the radiation-dominated era, sound 
waves in the photon-baryon ϐluid set the scale for ϐluctuations 
and suppress the growth of structure on small scales, leading 
to a suppressing effect at high k. During the matter-dominated 
era, gravitational collapse becomes more efϐicient, and density 
ϐluctuations grow, amplifying the initial power spectrum at 
large scales. In the dark energy-dominated era, the expansion 
of the Universe accelerates, slowing the growth of structures at 
large scales, and leading to a ϐlattening of the power spectrum 
at very low [17]k. The matter power spectrum at z = 0 (today) 
is often derived from the primordial power spectrum by 
applying a transfer function T(k);

P(k,T) = P(k)T(k,z)2                           (26)

Where, T(k,z) is the transfer function, which modiϐies the 
primordial power spectrum by accounting for the effects of 
cosmic expansion, baryon-photon drag, and gravitational 
collapse Figure 2.

Using the dimensionless form of the power spectrum with 
the suitable cosmological parameters of the ΛCDM model the 
power spectrum of density ϐluctuations, the distribution of 
galaxies, and the evolution of cosmic structures can be traced 
over four orders of magnitude, from the scales of a few Mpc via 
intergalactic Lyman alpha clouds, weak gravitational lensing 
and CMB ϐluctuations [21] as in 2:

4. Gravitational clustering and large-scale 
structure formation

In the early Universe, density ϐluctuations (encoded in the 
initial power spectrum) were small. These ϐluctuations were 
seeded by quantum processes during inϐlation, with different 
scales of ϐluctuation having different amplitudes and shapes. 
These initial ϐluctuations were imprinted on the Cosmic 
Microwave Background (CMB), which provides a snapshot of 
the early Universe’s power spectrum. The evolution of these 
initial ϐluctuations, inϐluenced by the expansion of the Universe 
and the transition from radiation-dominated to matter-
dominated and dark energy-dominated eras, ultimately led 
to the growth of structures. As the ϐluctuations grow, they 
evolve into different types of Chaos in the Cosmos: Quantum 
Whispers and The Cosmic Genesis of Structures. The power 
spectrum quantiϐies how much variance exists in ϐluctuations 
across different scales, and it plays a key role in determining 
what kinds of structures emerge. The two-point correlation 
function ξ(r) provides a direct description of the clustering of 
galaxies and other objects in real space. It reveals the spatial 
distribution of matter. These two statistical measures along 
with the inϐluence of cosmological parameters like matter 
density (Ωm), Dark energy density (ΩΛ), and Hubble constant 
(H0) tell us how the growth of density ϐluctuations leads to 
structure formation.

4.1 On large scales

On large scales (Small k), the ϐluctuations in the density 
ϐield are initially small and linear, thereby corresponding 
to the linear regime in the evolution of the cosmos. These 
perturbations are nearly scale-invariant, meaning they are 
roughly the same across all spatial scales. This linear growth 
means that the density ϐield responds in proportion to the 
initial perturbations. Gravity is not strong enough on large 
scales to cause rapid collapse of structures due to Hubble 
ϐlow. The power spectrum on large scales is dominated by the 
contribution of dark matter and baryons, but the gravitational 
effects on these scales are relatively weak. The ϐluctuations 
here do not lead to fast gravitational collapse but rather to 
the slow formation of large structures (like superclusters and 
voids) as the Universe evolves. On large scales (small k long 
wavelengths), the ϐluctuations are mostly of small amplitude, 
and the power spectrum P(k) is relatively ϐlat or follows a 
gentle slope. These scales correspond to large regions of the 
Universe, where the density perturbations are weak. The 
long-wavelength modes (larger and small k) are responsible 
for the global distribution of matter. For instance, the largest 
structures in the Universe, such as ϐilaments and voids, are 
shaped by these long-wavelength perturbations. The density 
ϐluctuations on these scales correspond to the cosmic web 
structures shaped purely by the constituents of dark matter 
that emerge later and hence form the backbone of the cosmic 
web. On the same scales, the two-point correlation function 
ξ(r) becomes ϐlattened or approaches zero. This means that 

Figure 2: The power spectrum of density ϐluctuations in the Universe. The y-axis 
scale, labeled ‘Density ϐluctuations’, shows ∆2 = k3P, while the x-axis is the comoving 
scale (1Mpc ∼ 3.3Mly). (Tegmark, M. Universe of Max Tegmark. http://space.mit.edu).
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the density ϐluctuations on these scales are weak, and there 
is little clustering of galaxies on the largest scales. Instead, 
the matter is more uniformly distributed, leading to a more 
homogenous appearance when viewed at very large distances 
[11,22].

4.2 On small scales

As structure formation progresses, the ϐluctuations on 
smaller scales (larger k) grow faster, eventually entering a 
non-linear regime. The power spectrum shows a turnover at 
a particular wavenumber, corresponding to the non-linear 
scale. This is the point where the ϐluctuations no longer grow 
linearly but instead undergo non-linear collapse, forming 
compact structures. As the ϐluctuations increase in amplitude 
and regions of higher density become gravitationally bound, 
the growth rate of the density contrast (δ) becomes faster 
and more complex. These regions of over-density eventually 
form compact structures, such as galaxies, galaxy clusters, and 
dark matter halos. Non-linear growth results in the formation 
of overdense regions that collapse and become dark matter 
halos. These halos are the gravitational wells in which galaxies 
are formed. At smaller scales (large k), the power spectrum 
P(k) steepens because gravitational collapse leads to rapid 
ampliϐication of ϐluctuations. Small-scale ϐluctuations grow 
faster due to the efϐicient clustering of dark matter. The dark 
matter halos and galaxies that form from these ϐluctuations 
correspond to the smaller scales in the power spectrum. 
While as, on small scales, the two-point correlation function 
ξ(r) increases signiϐicantly because galaxies and dark matter 
halos are much more likely to be found close to each other. 
This reϐlects the fact that gravitational collapse causes objects 
to form dense clumps [23]. As a result, the correlation function 
shows a sharp increase at small separations, indicating high 
clustering. As we go to smaller separations, ξ tends to saturate 
or ϐlatten, because objects (such as galaxies or dark matter 
halos) cannot get inϐinitely close to each other due to the ϐinite 
size of galaxies and the core of dark matter halos (saturation 
r ∼ 0.1Mpc). This behavior is important for understanding the 
dynamic interactions between structures at very small scales. 
The two-point correlation function also reveals characteristic 
length scales as;

r ∼ 1 − 2Mpc                      (27)

This corresponds to the size of typical galaxy groups or 
small clusters, hence ξ shows a peak, indicating that galaxies 
tend to cluster readily at these scales. These scales provide 
insight into the hierarchical nature of structure formation, 
where galaxies and dark matter halos form ϐirst, and then 
larger structures, such as groups, clusters, and the cosmic 
web, emerge through gravitational interactions [13].

5. Conclusion
In summary, the process of structure formation in the 

universe is driven by the gravitational collapse of initial 

density ϐluctuations, as evidenced by the power spectrum 
P(k) and two-point correlation function ξ(r). On large scales, 
the universe exhibits a cosmic web structure, where galaxies 
and clusters form along ϐilaments, with vast voids in between. 
On smaller scales, structure formation is characterized by 
the collapse of dark matter halos, leading to the formation of 
galaxies and their subsequent clustering into galaxy groups 
and clusters. The power spectrum P(k) provides a quantitative 
description of these ϐluctuations across different scales, while 
the correlation function ξ(r) captures the clustering properties 
of matter. Observational data, such as the CMB, galaxy surveys, 
and numerical simulations, conϐirm the hierarchical nature of 
structure formation and the evolution of large-scale structures, 
inϐluenced by the interplay of dark matter, dark energy, and 
gravitational dynamics.

6. References
1. Martinez E, Hidalgo CA. Primordial structures and their quantum origins. 

J Mod Phys. 2022. Available from: 
https://www.scirp.org/journal/paperinformation?paperid=46224 

2. Kumar KS, Marto J. A robust explanation of CMB anomalies with a new 
formulation of inϐlationary quantum ϐluctuations. arXiv. 2023. Available 
from: https://arxiv.org/abs/2305.06057 

3. Mukhanov VF, Feldman HA, Brandenberger RH. Theory of 
cosmological perturbations. Phys Rep. 1992;215(5-6):203-333. 
Available from: https://www.sciencedirect.com/science/article/
pii/037015739290044Z 

4. Porcelli F, Scibona G. Large-scale structure formation via quantum 
ϐluctuations and gravitational instability. Int J Geosci. 2014;5. Available 
from: https://www.scirp.org/journal/paperinformation?paperid=46224 

5. Baumann D, Peiris HV. Cosmological inϐlation: Theory and observations. 
arXiv. 2008. Available from: https://arxiv.org/abs/0810.3022 

6. Lyth D H, Liddle AR. The primordial density perturbation: 
Cosmology, inϐlation and the origin of structure. Cambridge: 
Cambridge University Press; 2009. Available from: https://www.
cambridge.org/core/books/primordial-density-perturbation/
F31CB0303093E5871D3DB103E9714E5C 

7. Sasaki M. Large-scale quantum ϐluctuations in the inϐlationary universe. 
Prog Theor Phys. 1986;76(5):1036-1046. Available from: 
https://doi.org/10.1143/PTP.76.1036 

8. Guth AH, Kaiser DI. Inϐlationary cosmology: Exploring the universe from 
the smallest to the largest scales. Science. 2005;307(5711):884-890. 
Available from: 
https://www.science.org/doi/abs/10.1126/science.1107483 

9. Pen UL, Seljak U, Turok N. Power spectra in global defect theories 
of cosmic structure formation. Phys Rev Lett. 1997;79:1611. 
Available from: https://journals.aps.org/prl/abstract/10.1103/
PhysRevLett.79.1611 

10. Landau S, León G, Sudarsky D. Quantum origin of the primordial 
ϐluctuation spectrum and its statistics. Phys Rev D. 2013;88(2):023526. 
Available from: https://journals.aps.org/prd/abstract/10.1103/
PhysRevD.88.023526 

11. Labini FS. Gravitational clustering: an overview. In: AIP Conference 
Proceedings. American Institute of Physics. 2008:970;205-221. Available 
from: https://arxiv.org/abs/0806.2560 

12. Guth AH, Pi SY. Fluctuations in the new inϐlationary universe. Phys Rev 
Lett. 1982;49:1110-1113. Available from: 
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.49.1110 

13. Davis R, Zhou K. A new paradigm in density perturbations during 
inϐlationary phases. Universe Res J. 2023.



Chaos to Cosmos: Quantum Whispers and the Cosmic Genesis

 www.physicsresjournal.com 023https://doi.org/10.29328/journal.ijpra.1001107

14. Maldacena J. Non-gaussian features of primordial ϐluctuations in single 
ϐield inϐlationary models. JHEP. 2003;2003(05):013. Available from: 
https://doi.org/10.1088/1126-6708/2003/05/013 

15. Morikawa M. Quantum ϐluctuations in vacuum energy: Cosmic inϐlation 
as a dynamical phase transition. Universe. 2022;8(6):295. Available 
from: https://doi.org/10.3390/universe8060295 

16. Steinhardt PJ. Natural inϐlation. In: Gibbons GW, Hawking SW, Siklos 
STC, editors. The Very Early Universe. Cambridge: Cambridge University 
Press; 1983;251.

17. Scoccimarro R, Zaldarriaga M, Hui L. Power spectrum correlations 
induced by nonlinear clustering. Astrophys J. 1999;527(1):1. Available 
from: https://arxiv.org/abs/astro-ph/9901099 

18. Bharadwaj S. Perturbative growth of cosmological clustering II: The two-
point correlation.

19. Zhang Y. A coarse-grained ϐield theory for density ϐluctuations and 
correlation functions of galaxies and clusters. Astron Astrophys. 
2007;464(3):811-814. Available from: 
https://arxiv.org/abs/astro-ph/0611712 

20. Zhang Y, Chen Q, Wu SG. Field theory of the correlation function of mass 
density ϐluctuations for self-gravitating systems. Res Astron Astrophys. 
2019;19(4):053. Available from: https://arxiv.org/abs/2107.09425 

21. Kitaura FS. Non-gaussian gravitational clustering ϐield statistics. Mon Not 
R Astron Soc. 2012;420(4):2737-2755. Available from: 
https://doi.org/10.1111/j.1365-2966.2011.19680.x 

22. Achúcarro A, Gong JO, Palma GA. Non-gaussianity in the era of precision 
cosmology. Prog Theor Phys. 2023.

23. Parker LE, Fulling SA. Exploring high-energy density ϐluctuations in 
cosmology. J Astrophys. 2021.


