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Abstract

In this paper, the concept of ‘system of fuzzy reasoning’ is presented. It is the first
temptation to expand ideas presented in [1] concerning ‘human intelligence’ linguistic
variable and [2] concerning ‘truth value of fuzzy reasoning’ in the framework of the
human intelligence linguistic variable. In ‘systems of fuzzy reasoning’, besides the
‘human intelligence’ linguistic variable also other linguistic variables are also used.
An expert knowledge-based system of fuzzy reasoning describing the dynamics of a
real-world phenomenon is presented.
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Systems of fuzzy reasoning provide a theoretical framework for modelling. First, by defining the concept of system of fuzzy
reasoning, its properties, and then by stating the necessary and sufficient conditions to encompass all possible ‘If...THEN ..
statements. Finally, selecting the resulting membership function [3]. pg.81. More statements that are general can be formulated
on a system of reasoning than on arbitrary ones. Linguistic variables can often be used to transform non-numerical reasoning

premises and responses into a numerical form.

Definition 1.1
A system of fuzzy reasoning R = {Rj:R,....R|} isaset of fuzzy reasonings R,
R =If{a,isA,) ™' (a,isA,) =’ ... " (a,isA,) then (b,is B,)

where:

(1.1)

i=1,..,Lk=1,..K A, and B, are triangular or trapezoidal fuzzy subsets of the set of real numbers R'.

The symbols denoted by (alis Ail)’(azis A ) . .(akis Aik) are fuzzy statements (called by some people arguments), the symbols

a, a,, ..., a, are real numbers and are called premises. The symbols denoted by (b, is B)) are fuzzy statements, called individual
consequences or responses. The symbols b, are real numbers. The membership functions of the fuzzy subsets A, and B, are

denoted by fAik and fBi respectively. The symbol denoted by i, is one of the fuzzy logic operators: NOT, AND, OR, XOR.

According to [2], the part of the fuzzy logic reasoning R, (see formula (1.1)) denoted by

(a,isA,) ®' (a,isA) =, .=} (a, isA,)

is called a fuzzy logic expression of R..

(1.2)

Remark that, according to this definition, the number of arguments can be different for different logical expressions of the
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system. Concerning this aspect, we point out that it is possible to formulate all reasoning with a common number K of arguments
by taking for arguments k, which are not used in rule i, the membership function fpik (x)=1forallxeR".

To calculate the response of a fuzzy reasoning system = {R,, R,, ... R}, the truth value of reasoning R, (degree of fulfillment
DOF(R))) has to be evaluated using a selected inference method. In the next step, the responses of the individual’s reasoning are
combined with the help of a combination method. Finally, a defuzzification method transforms the fuzzy reasoning system's
response to a crisp result. This procedure can be considered as the definition of a function assigning the final (crisp) result to
the input.

The subject of the truth value DOF() of a fuzzy logic reasoning R,
R =If(a,isA,) ™' (a,isA,) x', .. X" (a,isA,) then (b,is B,)
is largely discussed in [2], in the framework of the ‘human intelligence’ linguistic variable.

In the following, we expand the truth value computation for a system of fuzzy logic reasoning by using several illustrative
examples of such computation.

Example 1.1 (system of two reasonings with one premise) Consider the fuzzy reasoning system R consisting of two
reasonings R = {R,, R,} and one premise a,. The reasons are given by

R =If (alisAll)then(b1 isB ) A= (1,2,3) ,B; =(1,2,3) triangular fuzzy subsets

R, =If (alis Azl)then(b2 isB ) Ay, =(2.3,4) .B,(3,4,5) triangular fuzzy subsets

In case of the fuzzy reasoning R,, the logical expression is the statement (a, is A,,) whose truth value is

—1for1<a1<2ande1( ) 3— a1f0r2<a <3.
1

fAll(al):al

In case of the fuzzy reasoning R, the logical expression is the statement (a, is 4,,) whose truth value is

fa, (a)=2

The normed weighted sum of a combination of individual responses (DOF, B) is the overall fuzzy consequence B with the
membership function [2] pg.086.
2
ZileOF(Ri(al))xﬂi x fg (X)
fo (x)= 5 ' (1.3)
max,[y;_DOF (Ri (al))xﬂi X fBi )]

2for2<a <3and f 4-— afor3<a <4,
A, (2)=

1

where fi=—o——
j oo B (x)dx

fA“(al)x fBl(x)+ fAZl(al)x fBz(X) |
maxu[f/_\ll(al)x fBl(u)+ fAZI(al)X fBz(u)]

Computing B we find ;= B, = 1. Hence fg(x)=

For 1 < a, < 2 after replacing fpll (al) ’ fA21 (al) the following result is found:

(8 —Dx fg (x)+0x fg (x) _ -
X)= ! Bl 2 _ (al Dx(x-D =x—1forl<x<2

f
s () max[(a, —1)x fBl(u)+0x fBz(u)] max[(a, —1)x fBl(u)]

(al—l)XfBl(X)+O>< fBz(x) (a1—1)><(3—X)

fg(x)= maxy (@~ x fp (u)+0x T (u)] " maxy[(a ~ 1) x fg (U] Imxforaex<d

(al—l)x fg (x)+0x fg (x) 0
fB(x): 1 2 = =0for3<x<4

max {(a1 ~1)x fg, (u)+0x fs, (u)} maxy {(a1 ~1)x fe, (u)}
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(a-1)x fB](x)+0>< fBz(x) ) .
maxy {(al —1)>< fBl (u)+0x fB2 (u)} max {(al —1)>< fBl (u)}

=0for 4<x<5

fB(X):

According to [2] p. 086. The membership function f,(x) of the overall fuzzy consequence B for 1 < a, < 3 is the fuzzy subset
represented in the next Figure 1.1:

‘overall consequence membersiup flmetion in case of normed wei ghted
sum combinafion
1_

0.5

0.6

0.2

Figure 1.1: Membership function fB(x) of the overall fuzzy consequence Bfor1<a, <3

The fuzzy mean of the overall fuzzy consequence B, denoted by M(B), and defined by
o0
_ [ ZopXx fg (x)dx

M(B) m (1.4)

is the location of the overall fuzzy consequence B. It is also called the center of gravity or centroid. This is the number for
which the part of the membership function f,(x) on the left of this number is in equilibrium with the right side. The equilibria
occur when the moments corresponding to the two sides are equal. Computing the fuzzy mean directly by using formula (1.4),
the following result is found: M(B) = 2. Therefore, the equilibrium in the case of this example is situated at the point x =2.

On the other hand, according to [2], when the normed weighted sum combination and mean defuzzification are used, the
following equality holds:
2
< d: x M (B:
A(ay) =M@ - =L 1s)
Y=l
Where d,, d, are the truth values of the logical expression of the fuzzy reasoning R, R,, respectively, and M(B,), M(B,) are
the mean value of the individual answers of the fuzzy reasoning R, R,, respectively. In case of the system of fuzzy reasoning
R={R,R,}
For 1 <a, < 2, the following equality holds:
d=a,-1,d,=0,M(B)=2M(B)=4
Replacing these values in formula (1.5), it follows that R(a;) =M (B)(a )= L 2 9% )
. a, |= = =2,
eplacing these values in formula (1.5), it follows that ( 1) ( )(al) a 10

Remark that the localization of equilibrium obtained with (1.5) is the same as that obtained with (1.4) via membership
function.
For2<a,<3,d,=3-a,d,=a,-2,M(B,) =2, M(B,) = 4. Replacing these values in formula (1.5), the following result is found:

(B-a)x2+(a, —2)x4
R(a,)=M(B)(a )= ;_aliall_z “2xa -2,
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Therefore, when 2 < a, < 3, the equilibrium is located at the pointx =2 x a, - 2.

For3<a,<4,d =0,d,=4-a, M(B,) =2, M(B,) = 4. Replacing these values in formula (1.5), the following result is found:

0x2+(4- al) x4
R =M (B =— U -4
() ) -
Therefore, when 3 < a, < 4, the equilibrium is located at the point x = 4.

The number R(a,) = M(B)(a,), assigning the final (crisp) result to the input a,, is considered the location of the truth value of
the system of fuzzy reasoning R = {R,, R,} corresponding to the input a,. The graphic of the function R(a,) = M(B)(a,) is presented
in the next Figure 1.2:

Figure 1.2. Show that: for one input a, € [1,2] the truth value of the overall response of system is located at 2, for one input a,
€ [2,3] the truth value of the overall response of system is located at 2a, - 2, for one input a, € [3,4] the truth value of the overall
response of system is located at 4. It can be seen that the centroid is constant if a small perturbation of the input a, € (1,2) U
(3,4) occurs. For input a, € [2,3], the truth value location of the overall response of the system increases linearly from 2 to 4. This
interval is more appropriate to control the equilibrium location via the premise a,.

‘mean defiified consegquence in case of normed weilghted sum
combination’
4n

3.5

1.5+

Figure 1.2: Location of the truth value of the overall response of the system of fuzzy reasoning R = {R, R,}.

Example 1.2. (Example 4.4. Pg. 90. [1], system of three reasonings with one premise. Consider the fuzzy reasoning system R
consisting of the following three fuzzy reasonings, R = {R, R,, R.}:

Ry is If (ais A, Jthen(by is B, ), A =(1,2,3) ,B, = (0,1,2) triangular fuzzysubsets
R, is If (ais Az)then(b2 is Bz), A, = (3,4,5) B,y = (2,3,4) triangular fuzzy subsets
Ry If (ais A3)then(b3 is B3),A3 =(0,3,6,) By = (0,2,4) triangular fuzzy subsets

The truth values of fuzzy logic expressions of reasoning are:

DOFRl(a)za—l, forl<a<2; DOFRl(a):3—a for2<a<3
DOFRZ(a)za—3, for3<a<4; DOFRz(a):S—a ford<a<5s

6-a for3<a<6

DOFR, (a) =%, for 0 <a<3; DOFR(a)=

On the interval [1,5], the DOFR (a) can be written as

s

for 1 <a <2; DOFR, (a)=a—1, DOFR,(a)=0; DOFR;(a)=

w | ®

for2<a<3; DOFRl(a)=3—a, DOFRz(a)=0; DOFR3(a)=

W |
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6-a
for 3 <a <4; DOFR, (a)=0, DOFR, (a)=a-3; DOFR3 (a)= T;

6-a
ford<a<5; DOFRl(a)=0, DOFRz(a)=5—a; DOFR3(a)=T;

On the other hand:
fBl(bl)zbl; for0<b1<1 fBl(b1)=2—b]; for1<b1<2
fBz(bz):b2 -2; for2<b2 <3 fBz(b2)=4—b2; for3<b2 <4

b _
fo (by)=-2: for 0<b,<2 fg (by)=—2; for2<h, <4
B, (P =~ for 0<by B, (03) =~ for2 <y

Therefore, considering the normed weighted sum combination with mean defuzzification, the resulting overall consequence
location of the fuzzy reasoning system R = {R, R, R.}: is defined as the following one variable function R(a) = M(B)(a) (relation
3.3.5pg.73 [1]:

1x DOFR, (a)+3x DOFR, (a) +2x DOFR; (a)
= 1.5
DOFR, (a)+ DOFR, (a)+ DOFR, () (1:5)

R(a)

Hence, we obtain:

a
1><(a—1)+3><0+2><E 5xa-3

T 4xa-3

forl<a<?2 R(a): a
a—l+0+E

l><(3—a)+3><0+2><§

for2<a<3 R(a): R _ 9-a
3—a+0+> 9-2xa
3
6-a
Ix0+3x(@-3)+2x—— ~
for3<a<4 R(a): — 3 :7><a 15
0+a-3+—— 2xa-3
3
6-a
Ix0+3x(5—-a)+2x—— B
ford<a<5 R(a): — 3 =5271 141><a
- —-4xa

0+5-a+——
3

The graphic of the one variable function R(a) = M(B)(a) for a € A is represented in the next Figure 1.3:

‘confinuous mean defumified consequencein case of normed weighted
sum combination”
269

2.2

2.0

Figure 1.3: Location of the truth value R(a) = M(B)(a) of the overall response of system of fuzzy reasoning R = {R, R,, R,}for a e [15].
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Example 1.3 (system of two reasonings with two premises) Consider the fuzzy reasoning system R consisting of two
reasonings R = {R,, R,} where the reasonings are given by:

R, If (alisA“)then(b1 isB ) A= (1,2,3),B (1,2,3) triangular fuzzy subsets
R, If (azisAzz)then(b2 isB ) Ay, = (2,3,4).B ) = =(3,4,5) triangular fuzzy subsets

DOFRl(al) =a -1 for 1<a <2; DOFR (al) =3-a for2<a <3

DOFRl(az):az—Z for2<a, <3; DOFR2(a2)=4—a2 for 3<a, <4
fBl(bl):bl for 1<by <2 fBl(b1)=3—b1 for2<by <3

fBz(bz):b2 for3<b2<4 fBz(bZ):S_bZ for4<b2 <5

For the maximum combination B of B,,B, [2] pg.0.84, the membership function of the overall response is:
fig (b) = max{DOFR, (a) x fBl (b), DOFR, (a,)x fBz(b)} =
= max{DOFR, (a) x (b —1), DOFR,(a,)x 0} =

= DOFR, (a)) x (b 1) for 1<b<2

f (b) = max{DOFR, (a) x fB1 (b), DOFR, (a,)x fBz(b)} =
= max{DOFR, (a) x (3—b), DOFR,(a,)x 0} =
= DOFR, (a)) % (3—b) for 2<b<3

fg (b) =max{DOFR, (a,) fBl(b), DOFR, (a,) % fBz(b)} =
= max{DOFR, (a)x0, DOFR, (a,)x (b—3)} =
= DOFR, (8, ) x (b —3) for 3<b<4

fg (b) = max{DOFR, (a)x fBl(b), DOFR, (a,) x fBz(b)} =

= max{DOFR, () x 0, DOFR, (a,)x (5—-b)} =
= DOFR, (a,) % (5 —b) for 4<b<5

The mean value M(B)(a,,a,)(centroid or center of gravity) of the defuzzified consequence B, denoted by R(a,,a,), is used in
multiplicative or additive form for the location of the truth value of the fuzzy reasoning system. In this case, it is:

R( -2, ) DOFR( )+2>< DOFRz(aZ):(a1—1)+2x DOFRz(az)forl<a1<2

and

R(al,az)zDOFRl(a1)+2>< DOFRz(a2)=(3—a1)+2>< DOFRz(az)for2<a1<3.
Therefore:

R(a,a,)=(a - +2x(a,-2)forl<a <2and2<a, <3

R(a,a,)=(a -1)+2x(4-a,) forl<a <2and3<a, <4
R(a.a,)=03-a)+2x(a,-2)for2<a <3and2<a, <3
(

R(a,a,)=0G-a)+2x(4-a,) for2<a <3and3<a, <4

The location R(a,, a,), of the truth value of the fuzzy reasoning system in the case of the overall answer is presented in the
next Figure 1.4:

https://doi.org/10.29328/journal.ijpra.1001124 www.physicsresjournal.com m
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" marximum combinafion, mean defuzzificafion’

Figure1.4:R(a, a,) = M(B) (a, a,) for (a, a,) e [1, 3] x[2.4].

Other combinations can also be used. Using, for example, normed weighted sum combination and mean defuzzification, the
overall response location can be obtained directly by using the formula:

2
R(ap.a,) = M(B)(al,az):w (1.6)

Yi=1i

Where d,, d, are the truth values of the logical expression of the fuzzy reasoning R, R,, respectively, and M(B,), M(B,) are the
mean value of the individual answers of the fuzzy reasoning R,, R,, respectively. In case of the same system of reasoning

R If (alis Ay )then(b1 is Bl)’ A= (1,2,3) B, = (1,2,3) triangular fuzzy subsets
R, If (azis Azz)then(b2 is Bz),A22 =(2.3,4) B, = (3,4,5) triangular fuzzy subsets

Using the already computed truth values

d, = DOFRl(al)zal—l for 1<a, <2; DOFRl(a1)=3—a1 for2<a, <3

1
d, = DOFRZ(az) =a, -2 for2<a, <3; DOFRz(az) =4-a, for3<a, <4
and the values of M(B,) = 2, M(B,) = 4 computed using formula

IO_OOOXX fg (x)dx
M(Bj)=—5——— i=12 (1.7)

and replacing in (1.6), for the overall responses R(a,, a,) = M(B)(a,, a,), the following result is found:

2xla, —1)+4x(ay—-2) 2xa +4xa,-10
R(al,a2)= (1 ) 2 = 1 2 f0r1<al<23nd2<az<3
a, +a,—3 a +a, -3
1772 172
2xla, —1)+4x(4-a,) 2xa —16xa,+14
R(apaz): (1 ) 27 _ 1 2 forl<a1<2and3<a2<4
a, —a,+3 a, —a,+3
1 "2 1 =2
2x(3-a, |+4x(a,-2) -2xa +4xa,-2
R(a.a,) = () 2 7_ "1 2~ for2<a <3and2<a, <3 (1.8)
—-a, +a, +1 —-a,+a, +1
172 172
2x(3-a, |+4x(4-a,) -2xa —4xa,+22
R(a.a,)= (=) 2. 2 “for2<a <3and3<a, <4

—a —a, +7 —a —a, +7
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2. What is a complete and what does redundant system of fuzzy reasoning?

A system of fuzzy reasoning is complete or consistent on a set of premises 4 if it can provide an answer to all possible
questions concerning the phenomenon modeled, see[3], pg.82. More precisely:

Definition 2.1. The system of fuzzy reasoning
R={R,R,,...R},

is complete on the set ofpremises A if for every premise (a,,a,,...a) € A the corresponding and the combined response set
B(q;,a5,.--8K ) is a nonempty fuzzy set.

Note that the definition requires not only that for every premise (a;.a,....a) € A there should be a reasoning i with a non-
empty response, but it also requires the combined response to be non-empty. The completeness of a system of fuzzy reasoning
depends on the set of premises A on which the reasoning system's responses are to be found, and on the combination method
used. The defuzzification does not influence the completeness of the reasoning system. The minimum combination seeks the
difficult task of finding complete agreement, while the other methods only exclude responses that are impossible for each rule.
Therefore, it is not surprising that the condition of completeness is easier to fulfill using the maximum or additive combination
methods than using the minimum one. For a system of fuzzy reasoning, the following statements can be formulated regarding
completeness.

Statement 2.1. [3]. pg.83. The fuzzy reasoning system R={R,R,,...R}, used with maximum or additive combination
method is complete on the premises set A if and only if for each premise (&.a,....a, )€ A there is a reasoning R, such that

DOF(Rj)(a ,az,...aK) >0.

Statement 2.2. [3]. pg.83. The system of fuzzy reasoning R={R,R,....R}, used with the minimum combination method, is
complete on the premises set A4 if and only if

1. for each premise (a.a,....a ) € A there is a reasoning R, such that DOF(R;)(a,.a,....a,)>0
and

2. For any couple of two rulesRl.ande. ifthereis (8;.a,....a,c) € A such that DOF(Ri)( a;,a,.,...8, ) > 0and DOF(RJ-)( ay,ay,...2y ) >0,

then g;B; 2.

If the minimum combination is used, then the fuzzy reasoning system considered in Example 1.3 is not complete on the

interval A = [2,3]. That is because for any a, € Athe equality min{ fg (al), fg (al)} =0hold.
1 2

If the maximum combination or additive combination is used, then the fuzzy reasoning system considered in Example 1.3 is
complete on the interval 4 = [2,3].

The completeness of a system of fuzzy reasoning used with maximum or additive combinations depends only on the ‘range’
on which the arguments are defined. This ‘range’, which is called the support of a system of fuzzy reasoning, is defined as follows:

Definition 2.3. The support of the fuzzy reasoning
R =Ifla,isA,) X' (a,isA,) X', ..~ (a,isA,) then (b,is B,)
Is the K - dimesional set defined by

supp(R;) = supp(A“)X---XSUpF’(AiK)

Statement 2.3. [3].pg.84.The system of fuzzy reasoning R={R,R,....R}, used with maximum or additive combinations, is
complete on A if and only if

i
Ac U=:1 supp(Ri).

Statement 2.4. .[3].pg.86.The system of fuzzy reasoning R={RR,,...R}, used with maximum or additive combinations is
complete on A=_i={ supp(R;).

The overlap between the premises is an important property of fuzzy reasoning systems. It thus seems that general fuzzy
reasoning systems may be at least partly redundant. However, this is not true: even reasoning whose premises are completely

https://doi.org/10.29328/journal.ijpra.1001124 m
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covered by other reasoning might still modify the consequences. Therefore, the possibility of removing fuzzy reasoning from
a general fuzzy reasoning system without a major change in the consequence cannot be judged based on only the premises. It
should be done by comparing the response set. In order to know which fuzzy rules can be removed, a measure of the overlap was
defined. For more details, see [1]. Pg. 87. In the following, we intend to give an illustrative example concerning what happens if
a fuzzy rule is removed.

Example 2.1. ([3].86). Consider the general fuzzy reasoning system R consisting of three reasoning R = {R.R,,R;} where the
reasoning is given by:

R =If (alis All)then(b1 is Bl)’All = (1,2,3),81 =(0,2,4) triangular fuzzy subsets

Ry =If (alis Ay )then(b2 is Bz)’ Ay = (2.3,4), B, = (3,5,7) triangular fuzzy subsets

Ry=If (alis Asl)then(b3 is B3), Ay = (1.5,2.5,3.5), By = (1,3,5) triangular fuzzy subsets

The premise of the third reasoning is fully covered by the premises of the other two reasonings. The fuzzy reasoning system
would remain complete (even for the minimum combination) on 4 = [1.5,2.5] if the third rule were removed. On the other hand,
the consequence of using mean defuzzification and additive combination with

a = 2.5leadsto3.25and removing R3 gives 3.5

3. Expert knowledge-based system of fuzzy reasoning

Assessment of fuzzy reasoning is a procedure where knowledge and / or available data are translated or encoded in fuzzy
reasoning. Since fuzzy reasoning system responses both on the combination and defuzzification method applied, this choice has
to be taken into account in the assessment.

According to [3], at least four different ways to assess a fuzzy reasoning system may be distinguished:
a) The fuzzy reasoning system is known by the experts and can be defined directly.
b) The fuzzy reasoning system can be assessed by experts directly, but available data should be used to update it.

¢) The fuzzy reasoning system is not known explicitly, but the variables required for the description of the system can be
specified by experts.

d) Only asetof observations is available, and a fuzzy reasoning system has to be constructed to describe the interconnection
between the input/output elements of the data set.

In this section, we will provide a system of fuzzy reasoning based on expert knowledge.

Consider algae growth in a water body receiving a steady loading of nutrients, including dissolved oxygen. It has been
observed that available nutrients x and algae biomass y vary in time and oscillate. Let x and y be measured on the scale between
0 and 1. For the fuzzy reasoning construction, let only two state descriptors, high h and low [, be used. For describing the process
in terms of a system of fuzzy reasoning, let us consider the expert knowledge incorporated in the following two triangular fuzzy
numbers defined on the unit interval [0,1]:

A, =(04,09.1) A =(0,0.1,0.7) (3.1)
With respect means:

2.3 0.8
M(Ah):T:O.% M(AI):T:O.N (3.2)

According to experts, the transitions between the states can be described as: starting with states hh= (xisAh)AND(yisAh)

at moment ¢, the level of available nutrients and algae is h. In the next time of period (let say 1 unit) the following process

take place: algae reduce nutrients to stateslh=(xisA1)AND(yiSAh); in turn because nutrients are insufficient algae become

I states|| :(xisﬁ )AND(yisA1 ); the nutrients are replenished and become hstatehl :(xisAh)AND(yisﬁ ); in the next period again

algae become h statehh :(xisAh)AND(yisAh). Schematically:
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hh - Ih -1l > hl - hh. (3.3

This description is fuzzy, and to describe the process in terms of a system of fuzzy reasoning, let us consider the following
system of fuzzy reasoning:

Ry is1f (is#y, ) ANDyisa, Jten sy | AND yis |
Rypis 1 xis#y ) ANDyisty then(xisty | AND s 34
Ry 11 xisty } AN yis# then( s, AND yis
R i1 isty, | AND s hen( sy, AND vy,

The system of fuzzy reasoning (3.4) is an algae growth model and can be used to construct the state vector trajectory in a
continuous space for a given initial state (x(0), y(0)). This trajectory is unique.

To illustrate the above proposition, consider the mean defuzzification and the normed weighted sum combination method
4
i M (B;) x DOF (R; (a))
4
%i=IPOF (Rj (a))

R(@) = (3.5)

Since in all reasoning the product fuzzy logic operator AND is used in formula (3.5), we replace:
DOFR, (a) = DOFR (x, y):(DOF((xisAh)AND(yisAh)): fph (%)% fph (v),

DOFR, (a) = DOFR, (x.y) = DOF xusAl AND ylsAh))—f,ﬁ (X)Xf%(y)’ (3.6)

(
DOFR; (a) = DOFR; (x.y) = DOF (xis#y ) AND( yisA, ) = f NOENGE
DOFR, (a) = DOFR, (x,y) = DOF (xisAy ) AND( yisA ) = fp (X)x fp (¥):

Remark that he membership functions fAh (x)and fA] (x) are given:

x-04 for 0.4 <x < 0.9, f/311 (x):lo_—leorOS <x<1

f 0forx<04,f

Ah(x): > Ah(x):
fAh(x)zo forl<x (3.7)

0.7—-x

f for0.1<x<0.7

=0forx<0, f (x):%for0<x<0.l, 1"61 (x)=

A% A
f'61 (x)=0for0.7 <x (3.8)

For the initial state x = 0.5, y = 0.6 the membership values are:

05-04 1

5-0. 07-05 02 1
fo (0.5)= == =0.200000000, f , (0.5)= =
A 09)="05 73 A (09)

=—=—=0.333333333;
06 06 3 (3.9)

0.720.6 _0.1_1_4166666666"
0.6 06 6

0.6-04 2
fa (0.6 ==0.4000000000, f
Ah ( ) 05 5 A] ( )

And the DOF - s values appearing in (3.6) are :

In case of nutrients x, the mean values M(B)) of individual consequences are replaced by

M(B;)=M(A)=027, M(B,)=M(A}=027, (3.10)
M(B;)=M(A,) =076, M(B,)=M (A, )=076

https://doi.org/10.29328/journal.ijpra.1001124 www.physicsresjournal.com m




Systems of Fuzzy Reasoning and Expert Knowledge-based Fuzzy Reasoning Systems, used in Modelling Real-world Phenomena m
,

In case of algae y, the mean values M(B)) of individual consequences are replaced by
M(B)=M(A,)=076, (B,)=M(A])=027,
M(By)=M(A)=027, M(B,)=M(A}=076

obtaining:

(3.11)

fao (X)xf y)x027+ f, (X)x fo (y)x027+ f, (X)xf, (y)x0.76+ f, (x)xf, (y)x0.76
oy 8T <027y (0 Ty (03027 (1)< Ty ()06 T (1 (<076
fo (X)xfy (y)+fy (X)xfy (Y)+fa (X)xfa (yY)+Fa (X)x Ty (y)
AT A ar A A AYTTA (3.12)
0.02160000000 + 0.03599999999 + 0.04222222223 + 0.02533333334
0.08000000000 +0.1333333333 + 0.05555555556 +0.03333333334

=0.4141176472

fa (X)xTy (Y)x0.76+F, (X)x T,y (Y)x027+F, (X)xf,y (Y)x027+1F, (X)xf, (y)x0.76
O, 1076 T 09Ty (912027 (T ()7037 Ty (0 1y ()07
fa (X)xf Y)+Fa (X)xTr (Y)+ T (X)xFa (Y)+ T (X)x T (Y
095 Tp ()7 Tp (9% T (7)5 T (0 g ()5 Tp ()% T ) (.13)
0.02160000000 + 0.03599999999 + 0.01500000000 + 0.02533333334
0.08000000000 + 0.1333333333 + 0.05555555556 + 0.03333333334

=0.453749999'

The same procedure is used to obtain x(t+1), y(t+1) as function of x(t), y(t) for t = 1,2,...

For computing the state (x(2),y(2)) we have to start with the initial values (x(1), y(1)) = (0.4141176472,0.453749999") and compute
the following DOF - s

DOF ((0.4141 176472isA, ) AND (0.4537499999 is Ah)) = f, (0.4141176472)x

Al
_0.4141176472-0.4 9 0.4537499999 - 0.4
0.5 0.5

f

Ah (0.4537499999) =0.003035294142,

DOF((0.4141 176472isA) AND (0.4537499999 is A, )) = fA1 (0.4141176472) x

0.7-0.4141176472 « 0.4537499999 - 0.4
0.6 0.5

fAh (0.4537499999) = =0.05122058810

DOF ((0.4141 176472isA | AND(0.4537499999isA, )) = f, (0.4141176472)x

A

0.7-0.4141176472 “ 0.7 —0.4537499999
0.6 0.6

f =0.1955514706

p, (0:4537499999) -
DOF ((0.4141176472is A ) AND 0.4537499999is A | = fp ()xTp (¥)

~0.4141176472-0.4 N 0.7 —0.4537499999
0.5 0.6

=0.01158823541

In case of nutrients x, the mean values M(B)) of individual consequences will be replaced by

M(Bl)=M(A1)=O.27, M(Bz)=M(A1)=O.27,

M (By)=M(A,)=076, M(B,)=M (A )=0.76

In case of algae y, the mean values M(B) of individual consequences will be replaced by

M(Bl):M(Ah)=0.76, M(B,)=M (A]):0.27,

M(By)=M (A])=0.27, M(B,)=M (Ah)=0.76

obtaining:

f’% (x)x fph (y)x0.27 + fA] (x)x fAh (y)x0.27+ f'61 (x)x fA] (y)x0.76 + fAh (x)x fA] (y)x0.76
fph (x)x fAh(y)+ fA1 (x)x fAh(y)+ f/l] (x)x fﬁ (y)+ fph (x)x fA1 (y)

X(2) =

= 0.6582944494 (3.14)
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fAh(x)x fAh(y)x0.76+ fp] (x)x fAh(y)x0.27+ fA] (x)x fp] (y)x0.27+ fAh (x)x fﬁ (y)x0.76
fAh(x)x fAh(y)+ fA] (x)x fAh(y)+ f'A1 (x)x f'61 (y)+ fAh(x)x fA] (y)

=0.2974125877 (3.15)

y(2)=

For computing the state (x(3), y(3)) we have to start with the initial values (x(2), y(2)) = (0.6582944494, 0.2974125877)
and compute the following DOF - s

DOF ((0.6582944494isAh) AND (0.2974125877)is A, )) =

0.6582944494 - 0.4 “

0=0,
0.5

fo (0.6582944494)x f A (0.2974125877)) =

At
DOF((0.6582944494isAI )AND (0.2974125877is A, )) =

0.6582944494 - 0.4 o
0.5

0=0

f, (0.6582944494)x f A (0.2974125877) =

A

DOF ((0.6582944494isA1 ) AND(0.2974125877isA, )) = (0.6582944494) x

=0.04663924915

0.7 —0.6582944494 " 0.7-0.2974125877

f
0.6 0.6

0.2974125877)

Al
DOF ((0.6582944494is A, ) AND (029741258775 A )) =fa (0.6582944494) x

0.6582944494 -0.4 0.7-0.2974125877

X =0.01158823541
0.5 0.6

f, (0.2974125877) =

Al
For nutrients x using the mean values M(B)) of individual consequences
M(By)=M(A)=027. M(B,)=M(A)=027,

M(B;)=M(A,)=076, M(B,)=M(A )=0.76

The computed value of x(3) is x(3) = 0.7599999999

For algae y, using the M(B) of individual consequences will be replaced by
M(B,)=M(A,)=076,M(B,)=M(A)=027,

M(B;)=M(A)=027, M(B,)=M(A,}=076

The computed value of y(3) is y(3) = 0.7018876635

For computing the state (x(4), y(4)) we have to start with the initial values (x(3),y(3)) = (0.7599999999,0.7018876635) and
compute the following DOF - s

DOF ((0.7599999999 isA, ) AND (0.7018876635 is Ah)) =
f
A (

DOF((0.7599999999 iSA ) AND (is A )) = f A (0.7599999999) x f A (0.7018876635) =0

0.7599999999) X fAh (0.7018876635) =0.1173739235,

DOF ((0.7599999999 isA ) AND (0.7018876635isA, )) = (0.7599999999) x f A (0.7018876635) =0

DOF ((0.7599999999 is A, | AND( 0.7018876635 is A )) =fa (0.7599999999) x f A (0.7018876635) =0

For nutrients x using the mean values M(B)) of individual consequences
M(By)=M(A)=027. M(B,)=M(A)=027,

M (53)= M (Ah):0.76, M(B,)=M (Ah):0.76

The computed value of x(4) is x(4) = 0.2699999999
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For algae y, using the M(B) of individual consequences will be replaced by
M(By)=M(A,)=076.M(B,)=M(A)=027,
M(B;)=M(A)=027.M(B,)=M(A,)=076

The computed value of y(4) is y (4) = 0.7599999999

The dynamics of the nutrient evolution and that of the algae evolution during the first four steps are represented in the next
Figure 3.1.

utrient and algae evolufion'

07
06 -
05
04

034

Figure 3.1: Nutrient evolution color red, Algae evolution color green.

For other descriptions, with a system of fuzzy reasoning, of dynamics of real-world phenomena, [4-8].

Conclusion

In this paper, the concept of ‘system of fuzzy reasoning’ is presented. Basic properties of the concept are underlined.
[llustrative examples are given. An example of a model, describing real-world phenomena, using an expert knowledge-based
system of fuzzy reasoning is provided.
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