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Abstract

The angular distributions for the elastic scattering of a deuteron from 12C were 
measured in the double model framework using a mass-dependent M3Y-type 
interaction. The optical potential of this study was derived using the double-folding 
formalism and subsequently employed in the optical model formalism to determine 
the reaction cross-sections of d + 12C at different incident energies. The calculated 
differential cross-sections were analyzed and compared to experimental results. A 
good fi t of the differential cross-section to the experimental data was achieved. The 
suitability of the fi t affi rms the present formulation as a suitable tool for the study 
of nuclear reactions and nuclear structure. The effect of including the imaginary 
potential and the s-matrix elements was also analyzed.

Introduction
The problem of nuclear scattering involves solving the 

Schrödinger equation for two interacting nuclei. This requires 
robust theoretical tools and models capable of reproducing 
fundamental nuclear matter properties such as binding 
energy, pressure, volume, susceptibility, and incompressibility 
[1-3]. Among these models, the Michigan 3-Yukawa (M3Y) 
interaction, derived from G-matrix elements of the harmonic 
oscillator potential, has been widely used and proven effective 
in studying nuclear structure and reactions. 

In recent years, a variant of the M3Y interaction, known 
as the mass-dependent M3Y-type interaction, was developed 
using the Lowest-Order Constrained Variational (LOCV) 
method. This interaction incorporates mass dependence 
through parameters derived from nuclei with mass numbers 
24, 40, and 90 [4]. Despite this mass dependence, the M3Y-type 
interaction was recommended for broader applications across 
different nuclei. However, its effect on reaction calculations 
remains insufϐiciently explored—a gap that forms the basis of 
the present study. 

Determining the most appropriate form of nuclear 
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potential to analyze interactions has been a longstanding 
focus in nuclear physics [5]. Both phenomenological and 
microscopic potentials have been developed and extensively 
used, particularly in elastic and non-elastic scattering 
channels [6]. Due to the presence of strong absorption effects 
in heavy-ion collisions, accurate modelling of the nuclear 
Optical Potential (OP) is essential. The real part of the OP is 
often derived using folding models, while the imaginary part, 
accounting for absorption, is typically modelled empirically 
[7,8]. 

The double-folding model combines realistic nucleon-
nucleon (NN) interactions with nuclear density distributions 
to construct the real part of the OP [9]. This approach 
minimizes the ambiguities associated with phenomenological 
potentials [10]. Although folded potentials are inherently real, 
the imaginary component—representing absorption—can be 
included phenomenologically or through density-dependent 
corrections.

This study applies the double-folding model using the 
mass-dependent M3Y-type interaction to analyze the elastic 
scattering of a deuteron from 12C. The primary goal is to assess 
the impact of the zero-range pseudo-potential and the mass-
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dependent interactions on scattering predictions and compare 
the resulting cross-sections with experimental data. Both the 
real and imaginary parts of the optical potential are evaluated 
using folding techniques, and the ϐits to experimental angular 
distributions are examined to determine the model’s accuracy.

B3Y-Fetal Effective Interaction

This study adopts the isoscalar component of the central 
potential from the mass-dependent M3Y-type interaction, 
as outlined in prior work [4]. The direct and exchange 
components of this interaction are given by [11,12]:

 
4 2.5 7419.23 1823.9800 4 2.5

r re eDV r
r s

 
                   (1)

Similarly, the exchange term is determined as:
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where  00
DV s , and  00

ExV s  are the direct and exchange parts 
of the isoscalar central B3Y-Fetal interaction.

The bare nucleon-nucleon (NN) interactions alone are 
inadequate in reproducing the saturation properties of 
nuclear matter. To correct this, a density-dependent factor 
f(ρ) is introduced, ensuring that the interaction achieves 
nuclear matter saturation [13]. This density dependence is 
expressed as [14,15]: 

     ( ) ( ),   00 00
D Ex D ExV r f V r                     (3)

Concerning the density dependence, an exponential form 
of the density-dependent term was adopted [16,17]:

     1   exp f C                        (4)

Here, C and β are constants determined to reproduce the 
correct binding energy and saturation density of symmetric 
nuclear matter. These constants are obtained from prior 
parameterizations [18].

The exchange term is analyzed using the resonating-group 
method in a single-channel approximation [19]. It includes 
both single-nucleon and core exchange effects, signiϐicant 
primarily when projectile and target nuclei have similar mass 
numbers. To localize the otherwise nonlocal exchange term, a 
zero-range pseudo-potential is added, yielding [13]:

 V  V 1 Ppt pt pt                      (5)

Where Vpt are the direct and exchange parts of the 
effective interaction, Ppt is the operator that exchanges all the 
coordinates of the two nucleons by making the exchange part 
of the effective interaction local. By the zero-range pseudo-
potential of equation (5), the interaction Vpt is transformed in 
the form [20,21],

       ˆ1-V P V r J E rpt ptEX                                         (6)

where the function   00
ˆ ( )J E J g E represents the zero-range 

pseudo-potential that incorporates the exchange component 

of the M3Y-type interaction [22-28]. The term, Vpt(r), is the 
direct part of the isoscalar interaction deϐined by Equation 
(1) but now expressed as the projectile-target interaction. 
The term g(E) represents the energy scaling factor. The 
magnitude of the exchange amplitude J00 was evaluated to 
be about −361MeV [11,18]. The energy scaling factor was 

approximated to be 1 0.005 E
A

       
.

The double-folding model

To construct the nuclear optical potential, the double-
folding model was used. The double-folding model convolves 
the effective NN interaction with the nuclear density 
distributions of the projectile and target [19]:

       V r V dr drp p pt t pt tp tF  ∬ r r r                     (7)

Where ρp and ρt are the density distributions of the 
projectile and target nuclei, and rtp = rt − rp. The nuclear 
densities are modelled using a two-parameter Fermi (2pF) 
distribution [29-31]:

 

1
( )1 exp( ) 0 ( )

( )

r Rp nrn p n p ap n
 


  
   
  
   

                 (8)

Here, ρo is the central density, and ap(n) are the half-
density radius and the diffuseness parameter, respectively. 
These parameters are obtained from empirical ϐits to charge 
distributions [26].

The double-folded potential naturally represents the real 
part of the optical potential. To account for the imaginary 
part—which captures absorption into non-elastic channels—a 
similar folding approach is applied but with a different 
renormalization factor [27]:

       U r N iN V r V rr Fi Coul                                 (10)

Where Nr(i) are the real and imaginary renormalization 
factors for the real and imaginary parts of the optical potential, 
and VCoul(r) is the Coulomb potential. These renormalization 
constants are adjusted to achieve optimal agreement with 
experimental data.

Results 
Folding Model Potential of the Elastic Scattering of 
d + 12C 

The double-folding model was employed to calculate 
the real and imaginary parts of the optical potential for the 
elastic scattering of a deuteron from 12C at incident laboratory 
energies of 28, 110, 120, and 170 MeV. Using these potentials, 
the reaction and total cross-sections were computed and 
compared with those obtained using both phenomenological 
and microscopic potentials. The results are presented in 
Table 1.

The results indicate good agreement between the 
calculated reaction cross-sections and existing literature [28-
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Table 1: Best-ϐit parameters and cross-sections for elastic scattering of d + 12C.
Target Elab(MeV) Nr Ni  σr (mb) σtot (mb)  

12C 28 1.00 0.80 977.95 1671.11
110 1.60 1.00 752.84 1416.83
120 1.70 1.00 730.08 1401.19
170 1.45 0.90 578.19 1119.98

33], conϐirming the reliability of the double-folding approach. 
The optical potentials generated in this study exhibited typical 
Woods-Saxon shapes, and the values of the renormalization 
factors Nr(i) reϐlect strong absorption effects at higher energies. 
The plots of the radial dependence of the strength of the folded 
potentials are shown in Figures 1-4. The potentials were 
attractive and short-ranged over small nuclear distances.

Analysis of the Differential Cross Section of the Elastic 
Scattering of d + 12C

The plots of the angular distributions of the elastic 
scattering for each incident energy are shown in Figures 5-8. 

Figure 1: The depth of the real and imaginary folded potential of d + 12C 
elastic scattering at Elab = 28 MeV.

Figure 2: The depth of the real and imaginary folded potential of d + 12C 
elastic scattering at Elab = 120 MeV.

Figure 3: The depth of the real and imaginary folded potential of d + 12C 
elastic scattering at Elab = 110 MeV.

Figure 4: The depth of the real and imaginary folded potential of d + 12C 
elastic scattering at Elab = 170 MeV.

Figure 5: Angular distribution of d + 12C elastic scattering at Elab = 28 MeV.
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The theoretical differential cross-sections match well with 
experimental data across all angles. The large X2 value at 170 
MeV suggests statistical anomalies or increased sensitivity in 
the data ϐitting (Table 2). 

The experimental data points were reproduced quite 
accurately at all energies and angular regions. However, in the 
data of 170 MeV, a maximum and minimum were observed 
between 150 ≤ θcm ≤ 250 and 250 ≤ θcm ≤ 350. In general, a good 

Figure 6: Angular distribution of d + 12C elastic scattering at Elab = 120 MeV.

Figure 7: Angular distribution of d + 12C elastic scattering at Elab = 110 MeV.

Figure 8: Angular distribution of d + 12C elastic scattering at Elab = 170 MeV.

ϐit of the theoretical calculations to experimental data was 
obtained, and a pronounced improvement in the ϐit of the 
differential cross-sections using the present formulation was 
achieved as compared to those obtained using microscopic 
and phenomenological potentials [28,30,31].   The plots of 
the modulus of the S-matrix elements are also shown in 
Figures 9-12 as a function of total orbital angular momentum 
L for the different incident energies. These plots reveal 
regions where |SL| < 1, indicating strong absorption and the 
presence of other nonelastic processes. At 28 MeV, strong 
absorption is observed at small impact parameters in the 
angular momentum range L ≈ 0 - 10. As energy increases, 
the contributing angular momentum values shift to higher L, 
indicating deeper penetration and more peripheral scattering 
contributions. This transition is consistent with the behaviour 
of the nuclear optical potential at different energies.

Figure 9: Modulus of the elastic S-matrix as a function of total orbital 
angular momentum of d + 12C at Elab = 28 MeV.

Figure 10: Modulus of the elastic S-matrix as a function of total orbital 
angular momentum of d + 12C at Elab = 110 MeV.

Table 2: Derived geometrical parameters of the optical potentials of d + 12C.

Target Elab 
MeV

Vr
MeV

rv

(fm)
av

(fm)
Wi

MeV
rw

(fm)
aw

(fm) x2

12C 28 61.00 0.91 0.57 50.00 0.75 1.49 10.66
110 75.00 0.67 0.90 27.36 0.91 0.63 2.09
120 76.00 0.67 0.98 25.77 0.96 0.57 4.43
170 52.00 0.78 0.86 25.00 0.98 0.61 3876440.21
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Conclusion
This study has employed the double-folding model in 

conjunction with the mass-dependent M3Y-type interaction 
to investigate the elastic scattering of [insert speciϐic nuclei] 
over a range of incident laboratory energies (28–170 MeV). 
The analysis incorporated both the real and imaginary 
components of the optical potential derived through folding 
procedures, accounting for strong absorption effects observed 
in heavy-ion collisions. The calculated reaction and total 
cross-sections, as well as differential angular distributions, 
show excellent agreement with experimental data, validating 
the effectiveness of the M3Y-type interaction in modelling 
nuclear scattering phenomena. The renormalization factors 
obtained for the optical potentials reϐlect the expected 
energy dependence, and the folded potentials exhibit Woods-
Saxon-like shapes consistent with known nuclear interaction 
behaviours.

Furthermore, the analysis of the elastic S-matrix elements 
revealed that nuclear contributions are most signiϐicant 
at small impact parameters and are gradually suppressed 
with increasing angular momentum, leaving the Coulomb 
interaction dominant at large distances. This conϐirms 
the realistic absorption effects modelled by the imaginary 
component of the potential. Overall, the results highlight 
the success of the mass-dependent M3Y-type interaction 
and the double-folding model in accurately reproducing 
scattering observables. It also demonstrated that the M3Y-
type interaction is a robust tool for studying both elastic 
and potentially non-elastic nuclear reactions. These ϐindings 
encourage future applications of this approach in other 
nuclear systems and energy regimes.
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