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Abstract

The traditional version of the Lorentz transformation is used to relate the coordinates of an 
event (a point in space-time) between different inertial coordinate systems in the absence of 
any gravitational effects. It is limited to those cases in which both reference frames are inertial, 
so they have a constant velocity relative to each other. By utilizing postulates regarding 
the equivalence between coordinates measured in an accelerating reference frame and 
coordinates measured in a reference frame instantaneously at rest with the accelerating 
frame, together with the traditional version of the Lorentz transformation, it is possible to 
derive a generalized version of the transformation applicable to the case in which one of 
the coordinate systems is accelerating. This is not new, and this report does not produce any 
new fi nal conclusions. What is different in this report is the style of analysis and the format 
in which the relevant equations are presented. The advantage is a simpler way to derive 
conclusions, albeit the conclusions are not new. The conventional approach derives basis 
vectors (a tetrad) for an accelerating system from assumptions regarding orthonormality, 
being nonrotating, and some assumption about relative orientations with an inertial system. 
Then event coordinates in the accelerating system are defi ned in terms of expansions in 
basis vectors. The approach used here starts by deriving coordinate transformations directly, 
without any need for basis vectors, by utilizing a to-be-determined inertial reference frame. 
This reference frame is one of the entities to be solved but equations for it are derived and 
very simple. Having solved that part, the coordinate transformation is established. From the 
coordinate transformation, basis vectors are shown to be tangent vectors to coordinate 
curves and the equations for them are very simple. By defi ning suitable quantities and 
introducing suitable notation, the generalized version of the Lorentz transformation can be 
written in a way that is almost as simple as the traditional (constant velocity) version when 
calculating the coordinates of an event in an inertial system when given the coordinates 
in an accelerating system. Unfortunately, calculations of the inverse transformation, i.e., 
calculating the coordinates in the accelerating system when given coordinates in an inertial 
system, are more cumbersome. Worse yet, while a suitably selected history and future ensures 
the existence of an inverse transformation, there can exist space-time points for which it is 
not unique. However, the metric tensor can be derived in the accelerating system for the 
general case and is included in this report. This is used to calculate time dilations and Doppler 
effects that are outside the scope of inertial coordinate systems and have gravitational 
interpretations.

1. Introduction
The traditional version of the Lorentz transformation is used to relate the coordinates of an event (a point in space-time) 

between different inertial coordinate systems in the absence of any gravitational effects. It is limited to those cases in which 
both reference frames are inertial, so they have a constant velocity relative to each other. By utilizing a postulate (stated 
below in (1.1)) regarding the equivalence between coordinates measured in an accelerating reference frame and coordinates 
measured in a reference frame instantaneously at rest with the accelerating frame, together with the traditional version of the 
Lorentz transformation, it is possible to derive a generalized version of the transformation applicable to the case in which one 
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of the coordinate systems is accelerating. This is not new, and this report does not produce any new ϐinal conclusions. What 
is different in this report is the style of analysis and the format in which the relevant equations are presented. The advantage 
is a simpler way to derive conclusions, albeit the conclusions are not new. The conventional approach, e.g. in [1, pp. 170-172] 
derives basis vectors (a tetrad) for an accelerating system from assumptions regarding orthonormality, being nonrotating, and 
some assumption about relative orientations with an inertial system. Then event coordinates in the accelerating system are 
deϐined in terms of expansions in basis vectors. The approach used here starts by deriving coordinate transformations directly, 
without any need for basis vectors, by utilizing a to-be-determined inertial reference frame. This reference frame is one of the 
entities to be solved but equations for it are derived and very simple. Having solved that part, the coordinate transformation is 
established. From the coordinate transformation, basis vectors are shown to be tangent vectors to coordinate curves and the 
equations for them are very simple. This report is self-contained in that derivations are provided for all conclusions. By deϐining 
suitable quantities and introducing suitable notation, the generalized version of the Lorentz transformation can be written in 
a way that is almost as simple as the traditional (constant velocity) version when calculating the coordinates of an event in an 
inertial system when given the coordinates in an accelerating system. Unfortunately, calculations of the inverse transformation, 
i.e., calculating the coordinates in the accelerating system when given coordinates in an inertial system, are more cumbersome. 
Worse yet, while a suitably selected history and future ensures the existence of an inverse transformation, there can exist space-
time points for which it is not unique. However, the metric tensor can be derived in the accelerating system for the general case 
and is included in this report. This is used to calculate time dilations and Doppler effects that are outside the scope of inertial 
coordinate systems and have gravitational interpretations.

This report frequently uses the phrase “as seen by an observer”. In the context of this report, the word “seen” does not refer 
to a literal visual image. A visual image of an event (an “event” is a point in space-time) is received by an observer after a time 
delay, the time required for a light signal sent by the event to reach the observer. In the context of this report, the phrase “as 
seen by an observer” does not refer to a visual image but, instead, means that the observer assigned space-time coordinates 
to the event1. For example, the phrase “the observer sees a clock to be running slow” means that if the observer assigns a time 
coordinate to one tick of that clock, and another time coordinate to the next tick of that clock, the time between consecutive ticks 
is longer than the time between consecutive ticks of the observer’s own clock.

This report considers two observers. One, called the home observer, uses a clock at rest at the origin of his coordinate 
system, which is an inertial coordinate system (recognized to be inertial by freely moving particles having constant velocities)2. 
The other observer, called the traveler (with travel deϐined to be relative to home), uses a clock at the origin of his coordinate 
system, called the traveler’s system. The traveler’s system is not rotating but may have a translational acceleration relative to the 
home system. A space-time point denoting the start of the traveler’s journey has an arbitrary initial spatial translation relative 
to the home system and an arbitrary initial velocity in the home system, but the clocks are synchronized so that the traveler’s 
time coordinate and home time coordinate of the start of the journey are both zero. The goal is to relate, for an arbitrary event, 
the traveler’s coordinates of that event to the home coordinates of the same event. 

The traveler’s clock traces out a worldline as seen by the home observer. Information that is assumed to be known includes 
the three-dimensional (spatial) vector function, denoted X(t), which is a parameterization of the traveler’s worldline expressing 
the spatial coordinates x, in the home system, of a point on the traveler’s worldline, in terms of the coordinate time t in the 
home system3. From this parametrization, the velocity of the traveler’s clock as seen by the home observer is the function V(t) 
calculated from V(t) = dX(t)/dt.

All conclusions in this report are derived from two postulates. One, taken from [1, p. 164] with minor paraphrasing, is the 
statement:

Carefully constructed clocks (e.g., atomic clocks), when accelerated, will tick

at the same rate as unaccelerated clocks moving momentarily along with them,

and sufficiently rigid accelerated measuring rods will measure the same lengths

as unaccelrated rods moving momentarily along with them. 

 
 
 
 
  

     (1.1)

The second postulate that all results in this report are derived from is the Lorentz transformation applicable to the case in 

1If the only information available to the observer with which to assign space-time coordinates to an event is a visual image, it is assumed that the observer 
accounted for the travel time of the light signal when assigning these coordinates so that the assigned time coordinate does not include this travel time.
2Gravity is not 
considered here so we say freely moving instead of free falling.
3The notation used here uses bold block font for three-dimensional spatial vectors. Bold cursive font will be used for 4-vectors discussed later.
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which the traveler has a constant velocity v as seen by the home observer. This is presented in various formats in [2] through 
[3-8] but the format preferred for this work is taken from [9] and given as follows. Consider an event with home coordinates 
denoted (x1, t1) and traveler coordinates denoted ( , )1 1tx , and a second event with home coordinates denoted (x2, t2) and traveler 
coordinates denoted ( , )2 2tx . The standard (constant velocity) Lorentz transformation in [9] relates the displacement between 
these events expressed in each of the two systems according to4

 2 1
2 1 2 1 2t t t t

c



   

 
 
 

v x x

         
(1.2a)

     12 1 2 1 2 1 2 1t t          x x x x x x n n v        (1.2b)

where the parameter γ and the unit vector n are deϐined by

1
,  

2
1 2

vv

c

  



v
n

.           (1.3)

2. Analysis

Let P denote an arbitrary space-time point on the traveler’s worldline. The coordinates of P in the home system are denoted 
(xp, tp), and the coordinates in the traveler’s system are denoted ( , )1 1tx . The traveler’s clock is at the traveler’s origin and the 
worldline considered here is the worldline of the traveler’s clock so

P  0x .            (2.1)

Also, even if the traveler’s clock is accelerating, the hypothesis (1.1) states that it is still true that increments of proper time 
for displacements along the worldline of the traveler’s clock equal increments of time measured by the traveler’s clock. With 
proper time and the traveler’s clock both set to zero when the traveler starts his journey, the proper time along the worldline up 
to the point P equals tP . The proper time is an invariant that can be calculated in the home system, giving

 t tP P             (2.2)

where τ is the proper time calculated in the home system according to

 
0

1
( )

t
t d 

 
             (2.3)

with γ(t) deϐined by

1
( )

2 ( )
1 2

t
V t

c

 



.           (2.4)

Now consider an inertial system that is “local” with the traveler’s system at the arbitrary point P on the traveler’s worldline. 
This statement is deϐined to mean that there exists a time at which the origins of the two systems are at the same location and with 
each axis of the two systems aligned, the two systems are at rest relative to each other at this time, the space-time coordinates of 
the origins at this time are the space-time coordinates of P, and the clock in the inertial system is set to Pt  at this time. We will 
call this new inertial system the P-system. We use the postulate, stated in (1.1), that the traveler’s clock will momentarily (while 
at P) tick at the same rate as the P-system’s clock, and the traveler’s measuring rods will momentarily (while at P) measure the 
same lengths as the P-system’s measuring rods. To utilize this local inertial system in the analysis we use the following approach. 
Instead of selecting an arbitrary event and attempting to calculate traveler coordinates of it, we work in the opposite direction 
by selecting traveler coordinates and then identify what the event is that has those coordinates (this identiϐication can be done 
by ϐinding the home coordinates). Because the space-time point P is arbitrary, it is sufϐiciently general to conϐine our attention to 
those events that the P-system declares to be simultaneous with the event P. The event to be constructed will be called E, with 
traveler coordinates denoted ( , )E Etx and home coordinates denoted (xE, tE). With the P-system declaring E to be simultaneous 

4The open symbol   denotes the Euclidean dot product between three-dimensional (spatial) vectors. The unit vector n is a unit vector in the context of this 
dot product. This dot product is distinguished from a four-dimensional dot product, denoted by a solid dot, defi ned later.
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with P, we conclude from the hypothesis (1.1) that the traveler also declares E to be simultaneous with P,5 implying that

E Pt t .              (2.5)

A constraint that the event E must satisfy to be treated in this analysis is that there must exist a point P on the traveler’s 
worldline such that the inertial system local with the traveler’s system at P sees E to be simultaneous with P. Given that E is such 
an “allowed” event, so that E is simultaneous with P as seen by the P-system, the coordinates of E in the P-system are the same as 
the coordinates in the traveler’s system. Therefore, the coordinates in the P-system are also ( , )E Etx . Also, the coordinates of P in 
the P-system are ( , ) ( , )P P Pt t 0x . The P-system has velocity V(tP) as seen in the home system, so the transformation from barred 
coordinates to unbarred coordinates is obtained from (1.2) by replacing subscripts (with 2 replaced by E and 1 replaced by P), 
replacing v with V(tP), and replacing γ with γ(tP). The results, after simpliϐication by using (2.1) and (2.5) are

   
2

P E
E P P

t
t t t

c
 

V x          (2.6a)

   1E P E P Et      x x x x n n .       (2.6b)

3. Summary and discussion of the transformation to home coordinates
Information assumed to be available includes the functions X(t) and V(t) explained in Section 1. From these we construct 

the functions γ(t) and τ(t) via (2.4) and (2.3), so all these functions, which refer to the traveler’s worldline as seen by the home 
observer, are regarded as given. The goal here is to calculate the home coordinates of an arbitrary event E when the given 
information, in addition to the above functions, consists of the traveler’s coordinates ( , )1 1tx . The following steps are used:

The ϐirst step calculates tP. This is done by combining (2.5) with (2.2) so tP is calculated from the given Et via

 E Pt t .           (3.1)

Note that γ(t) is a strictly increasing function so there exists a unique tP satisfying (3.1) providing only that Et  is between 
zero and the largest display of the traveler’s clock (ϐinite if its worldline has a stopping point). With tP now solved, we calculate 
xP via

 P Ptx X .           (3.2)

With this done, all terms appearing in (2.6) have been evaluated except for the terms, xE and tE, to be solved. They can now 
be solved by writing (2.6) as

   
2

P E
E P P

t
t t t

c
 

V x
         (3.3a)

     
 21 P

E P E P E P
P

t
t t

V t
         

V
x x x x V .      (3.3b)

The ϐinal results are (3.1) through (3.3). The paragraphs below discuss some implications.

It is interesting that (3.3a) implies that tE = tP if either V(tP) = 0 or Ex = 0. This could have been anticipated even before 
deriving (3.3). Recall that the events P and E are always simultaneous as seen by the P-system, because this is a condition that 
was imposed on E. If  V(tP) = 0, the P-system is stationary relative to home, so P and E are also simultaneous as seen by the home 
system. Therefore, we could have anticipated that tE = tP when V(tP) = 0 even before deriving (3.3). Now suppose Ex = 0. Recall 
again that the event E is simultaneous with P as seen by the P-system, and therefore also as seen by the traveler, so they have 
the same time coordinates in the traveler’s system. Also, P is on the traveler’s worldline, so its spatial coordinates are zero in 
the traveler’s system. Therefore, Ex = 0 if and only if P and E have the same space-time coordinates in the traveler’s system, in 
which case they are the same space-time points and therefore have the same space-time coordinates in all systems. Therefore, 
we could have anticipated that tE = tP and xE = xP when Ex = 0 even before deriving (3.3).

A topic that can be discussed here is time dilation. However, there are two versions of time dilation because the traveler 
and home observer can disagree on simultaneity6.Speciϐically, they can disagree on which readings on their two clocks are 

 5While the P-system declares the events E and P to be simultaneous, it is not necessarily true that the home observer declares them to be simultaneous. 
6There is a third version of time dilation in Section 14.
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simultaneous. One way to clearly state which version of time dilation is being considered starts with the realization that a clock 
display is not only a time coordinate for some observer, but it can also be regarded as an event (think of a 5:00 o’clock whistle 
which is clearly an event). The version of time dilation that is being considered is clearly stated when stating which clock is the 
one whose displays are the events for which coordinates are to be determined. Here we discuss the version of time dilation 
in which displays on the traveler’s clock are not only traveler time coordinates of the displays but also events. The goal is to 
calculate home time coordinates of these events, so we will calculate how fast the traveler’s clock is ticking as seen by the home 
observer. This calculation is very simple. The traveler’s worldline is taken to be the worldline of the traveler’s clock (the clock 
deϐines the traveler’s origin) so traveler clock displays are events for which Ex = 0. From the previous paragraph we conclude 
that tE = tP so (3.1) becomes

  (when the events are traveling clock displays denoted )t t tE E E      (3.4a)

which can be inverted via (2.3) and (2.4) to solve for tE. Also, differentiating (3.4a) while using (2.3) gives

  (when the events are traveling clock displays denoted )
d tE t tE Ed tE

 .     (3.4b)

The instantaneous result (3.4b) is the same simple result that is obtained without acceleration. This is a time dilation in that 
dtE, which is the time seen by the home observer that is needed to change the display of the traveler’s clock, is greater than Ed t
, which is the change of the display of the traveler’s clock and therefore also equal to the time seen by the traveler needed to 
change the display of the traveler’s clock. A larger time between displays corresponds to a slower clock, so the home observer 
sees the traveler’s clock to be running slow. Unfortunately, the version of time dilation in which displays on the home clock are 
events for which traveler time coordinates are to be calculated, i.e., that calculates how fast the home clock is ticking as seen by 
the traveler, is not so simple but an example is given in Section 12.

4. A check for consistency
Note that (3.1) through (3.3) are as simple to write as (1.2) while having enough generality to apply to an accelerating 

traveler. However, (3.1) through (3.3) have a different format than (1.2). As a check for consistency, we show that the two 
formats are equivalent for the case in which the traveler has a constant velocity so that (1.2) also applies. Speciϐically, we will 
show that (3.1) through (3.3) produce (1.2) when the traveler’s velocity is constant.

Given a constant traveler velocity there is no loss of generality by orienting the coordinate axis so that the velocity is in the 
x-direction with x-component denoted v. In this case, γ is a constant given by (1.3), so the deϐinition (2.3) of τ together with (3.1) 
gives

(constant velocity)t tP E .          (4.1)

Also, the vector equation (3.2) has components

, 0, 0 (constant velocity)x vt y zP P P P  

where we treat the case in which the traveler starts the journey from the home origin. The above can be written via (4.1) as

, 0, 0 (constant velocity)x v t y zP E P P  
.       (4.2)

Next, the scaler equation (3.3a) becomes

(constant velocity)2
v xEt tE P
c

           (4.3)

while the vector equation (3.3b) has the components

, , , (constant velocity)x x x y y z zE P E E E E E    .      (4.4)

The last step substitutes (4.1) into (4.3) and uses (4.2) together with (4.4) to get

(constant velocity)2
v xEt tE E
c

 
 
 
 

        (4.5a)



An Alternate Presentation of a Generalization of the Lorentz Transformation to Allow Acceleration of a Coordinate System

 www.physicsresjournal.com 183https://doi.org/10.29328/journal.ijpra.1001127

  , , , (constant velocity)x x v t y y z zE E E E E E E         (4.5b)

which is the familiar format for expressing the Lorentz transformation applicable to inertial reference frames.

5. A simple application (twin paradox)
A simple application of the transformation given by (3.1) through (3.3) is the case in which the traveler departs from home 

with a constant speed v but changes direction as needed to return home. The goal is to compare clock readings (home versus 
traveler) when the traveler returns home. This comparison was already given by the time-dilation equation (3.4a) but the goal 
here is to provide another derivation of the same result. We ϐirst continue with the derivation that starts with (3.4a). When v 
is constant this equation reduces to

(constant ,  is display of  on traveler's clock)t t v E tE E E .      (5.1)

In (5.1), the display Et  on the traveler’s clock is the event (also the traveler’s time coordinate of the event) while tE is the 
home time coordinate of the event.

Next, we use a different derivation of the same result (5.1) just to demonstrate consistency. Instead of the event E consisting 
of the traveler’s clock displaying the reading Et , which is the interpretation of E in (3.4) and (5.1), here we take the event E to 
be the traveler’s return home. In this interpretation, Et  is the traveler’s time coordinate of his return home while tE is the home 
time coordinate of the traveler’s return home. The ϐirst step in the analysis notes that a constant γ in (2.3) together with (3.1) 
gives

(constant )t t vP E .          (5.2)

But the event E is a point on the traveler’s worldline, so Ex  = 0 and (3.3a) gives

(  on traveler's world line)t t EE P .         (5.3)

Combining (5.3) with (5.2) produces agreement with (5.1). 

6. Th e inverse transformation
When traveler coordinates of an event are given, the home coordinates are obtained from a simple procedure in Section 

3. We now consider the case in which the home coordinates are given, and the goal is to calculate the traveler’s coordinates. 
Using the transformation in either direction, one of the unknowns to be solved is tP. When the traveler coordinates are given, 
tP is solved via (3.1). When the home coordinates xE and tE are the givens, we need to construct an equation that contains the 
unknown tP with all other terms known. This is done by taking the dot product of (3.3b) with V(tp) to get

               1P E P P P E P E P P P P E Pt t t t t t t t                     V x V x V x x V V x x V

which gives

       P P E P E Pt t t   V x V x x

Substituting this into (3.3a) while using (3.2) gives

(constant velocity)2
v xEt tE P
c

  .          (6.1)

With the parameters tE and xE given, and the functions V and X given, (6.1) is the equation governing tP. An unfortunate 
property of (6.1) is that there are example traveler worldlines in which (6.1) does not have a unique solution for tP for some 
inputs tE and xE. In some cases, no solution exists. For some other cases, solutions exist but are not unique. This is discussed in 
more detail in Section 8. For the remainder of this discussion, we assume that event E is one in which (6.1) has a unique solution 
for tP and this solution has been found (by some numerical root ϐinding routine if necessary).

Given that tP satisfying (6.1) can be found and has been found, we calculate Et  via (3.1). The last step of the inverse 
transformation solves for Ex as follows. To shorten the notation, we deϐine, for an arbitrary vector W, a parallel part W  and a 
perpendicular part W , with respect to the direction of V(tP), according to

    
 

,2
tPtP

V tP
   

V
W W V W W W .        (6.2)
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The advantage of this notation is a less cumbersome way to write (3.3b), which is

   1 , , ,t tE P E P E E P E          x x x x x x .       (6.3)

The parallel part of the left side equals the parallel part of the far right side, and the perpendicular part of the left side equals 
the perpendicular part of the far right side so

       1
, or, ,tE P P E E E P

tP



     x x x x x x      (6.4a)

and

 ,E E P  
x x x .          (6.4b)

Now express Ex  as the sum of the parallel part plus perpendicular part while using (6.4) to get

     1
, ,E E E E P E P

tP
       x x x x x x x .

Now use the second equation in (6.2) to write this as

         1 1
1E E P E P E P E P E P

t tP P 
          

 
 
 

  x x x x x x x x x x x

.

Finally, we use the ϐirst equation in (6.2) to write this as

       
 

1
1 2

tPtE E P E P P
t V tP P

    
 

    
 


V

x x x x x V

.

Before summarizing the above results, we digress by noting two interesting properties of (6.1). One property is that tE = tP if 
V(tP) = 0. This could have been anticipated even before deriving (6.1) as already explained in Section 3. The second interesting 
property deserves more discussion. That property is the implication that if xE = X(tP) then tE = tP. This could have been anticipated 
even before deriving (6.1) as follows. Suppose xE = X(tP), i.e., xE = xP. Then the events E and P have the same spatial coordinates 
in the home system. They also have the same time coordinates in the P-system (by choice of point P) so it is not surprising that 
E and P are the same space-time point, implying tE = tP. This conclusion is made rigorous by (6.1), showing that it is true that 
the condition xE = X(tP) implies tE = tP. Therefore, the condition xE = X(tP) implies the simultaneous conditions xE = xP and tE = tP, 
which implies that E and P are the same space-time points, which implies that they have the same coordinates in all systems. A 
variety of implications follow by combining this implication with others already stated (e.g., that the event E is on the traveler’s 
worldline if and only if 0E x , and the conclusion from Section 3 that tE = tP and xE = xP when 0E x ). Putting the implications 
all together, we obtain the following summary of implications:

   
 

 

 if and only if  is the same spacetime point as 

if and only if  is a point on the traveler's worldline  if and only if

.

If any of the above are satisfied then .

If  then 

t E PE P
E

E

t tE P
t tP E









  

  0

0

x X

x

V .tP












    (6.5)

We now summarize the results derived in this section. It is assumed that we are given xE and tE, and the goal is to calculate 
Ex  and Et . The ϐirst step calculates tP from

   1
( )2t t t tE P P E P

c
  V x X         (6.6)

where it is understood that we are treating the case in which there exists such a tP (see Section 8 for more discussion). Having 
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done this, the quantities X(tP), V(tP), γ(tP), and τ(tP) all become knowns quantities, via the given worldline of the traveler in the 
home system together with (2.3) and (2.4), in addition to xE and tE being known quantities. The next set of steps calculate xP, Et ,
 and Ex  from 

 tP Px X            (6.7)

 t tE P            (6.8a)

       
 

1
1 2

tPtE E P E P P
t V tP P

    
 

    
 


V

x x x x x V .     (6.8b)

7. Another check for consistency
The goal of this section is to verify, merely as a check for mistakes, that (6.6) through (6.8) reduce to the familiar Lorentz 

transformation when the traveler has a constant velocity.

Given a constant traveler velocity there is no loss of generality by orienting the coordinate axis so that the velocity is in the 
x-direction with x-component denoted v. For this case, only x-components of terms in (6.6) have contributions and using X(tP) 
= vtP with (6.6) gives

 1
2t t v x vtE P E P

c
  

with solution 

or 

2 (constant velocity)2
v xEt tP E
c

 
 
 
 

.        (7.1)

Also, the vector equation (6.7) has the components

, 0, 0 (constant velocity)x vt y zP P P P  

which can be written via (7.1) as

2 , 0, 0 (constant velocity)2
v xEx v t y zP E P Pc

   
 
 
 

.      (7.2)

Next, the scaler equation (6.8a), together with a constant γ in (2.3) gives

1
t tE P




and using (7.1) gives

(constant velocity)2
v xEt tE E
c

 
 
 
 

.         (7.3a)

Finaly, the vector equation (6.8b) has the components

 1
, , , (constant velocity)x x x y y y z z xE E P E E P E E P

      .

Substituting (7.2) into this and simplifying terms via the identity
21

12 2
v

c
 
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gives

 , , , (constant velocity)x x vt y y z zE E E E E E E    .     (7.3b)

The transformation given by (7.3) is the familiar form for the case of a constant velocity.

8. Existence and uniqueness of the inverse transformation
Whether or not the inverse transformation in Section 6 exists and is unique is completely determined by the very ϐirst 

step of the calculation, which is to solve (6.6) for tP. As pointed out in Section 2, a constraint that the event E must satisfy to be 
treated in this analysis is that there must exist a point P on the traveler’s worldline such that the inertial system local with the 
traveler’s system at P sees E to be simultaneous with P. There exists a solution for tP to (6.6) if and only if E is such an “allowed” 
event. However, it is also possible that E is such an allowed event, so there exists a point P satisfying the above condition, but 
such a point P is not unique. In this case there are multiple solutions for tP to (6.6). Lack of existence is possible if the traveler’s 
acceleration continues forever, and an example is given later in Section 12. However, it is shown in this section that if the 
acceleration always has a ϐinite magnitude and has a ϐinite time duration, solutions must exist but are not always unique.

The goal of this section is to show that if the acceleration always has a ϐinite magnitude and has a ϐinite time duration, there 
necessarily exists a solution for tP to (6.6) (albeit not necessarily unique). The ϐirst step towards this goal shortens the notation 
in (6.6) by deϐining the function F(tP, xE), a function of tP and the vector xE, by

     1
, ( )2F t t t tP E P P E P

c
  x V x X         (8.1)

so that (6.6) becomes

 ,t F tE P E x .           (8.2)

The traveler’s journey begins at t = 0 but nothing was said about his prior history. It is convenient to stipulate that, before 
starting the journey, the traveler was at rest in the home system, so V(tP) = 0 if tP < 0. Also, the acceleration is taken to have a 
ϐinite time duration so there exists some cutoff time in the home system, denoted tC, such that the acceleration is zero when t > 
tC. We therefore have

    if

if 0

t t tC P CtP
tP








0
V

V .         (8.3a)

The cutoff for the velocity implies that X(tP) satisϐies

  ( ) ( ) ift t t t t t tP C C P C P C   X X V .       (8.3b)

Substituting (8.3) into (8.1) and regrouping terms for the case in which tP > tC gives

  

 
   

   

1
, if2

1
, ( ) if 02

if 0

t t F t t tP C C E P C
tC

F t t t t t tP E P P E P P C
c

t tP P


  

    

















x

x V x X      (8.4)

where γ is deϐined by (2.4). It is evident from inspection of (8.4) that

   , as , and , asF t t F t tP E P P E P       x x .     (8.5)

Given that the magnitude of acceleration is always ϐinite, so the velocity is a continuous function of time, F(tP,xE) is a continuous 
function of each argument. Continuity together with the mapping property (8.5) implies that (8.2) has a solution for tP for any 
value of tE.
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Having established that there necessarily exists a solution for tP to (6.6) if the acceleration always has a ϐinite magnitude 
and has a ϐinite time duration, the next question asks for the conditions in which the solution is unique under the assumed 
conditions regarding the acceleration. Note from (8.4) that F(tP, xE) is strictly increasing in tP when tP < 0 and when tP > tC. If (a 
big “if”) F(tP, xE) is strictly increasing in tP when 0 < tP < tC, then a solution for tP to (6.6) is unique. However, if (another big “if”) a 
solution for tP to (6.6) is a value of tP at which F(tP, xE) is strictly decreasing in tP, then this solution for tP is not unique. Therefore, 
the question of uniqueness is answered by considerations of whether F(tP, xE) is increasing or decreasing in tP. It will be shown 
below that (given a nonzero acceleration at some point in time) there necessarily exists home coordinates (tE, xE) for which 
a solution for tP to (6.6) is not unique. A sufϐicient condition, imposed on xE, for uniqueness will also be given. The arguments 
below will refer to the derivative of F(tP, xE) obtained from (8.1) and given by

       1 12, 1 ( )2 2F t V t t tP E P P E P
t c cP


   


x A x X .       (8.6)

We will show that there exist home coordinates (tE, xE) for which a solution for tP to (6.6) is not unique by constructing them. 
Select a tP for which A(tP) ≠ 0 but is otherwise arbitrary. Now select any xE satisfying

     1 121 ( ) 0 (for discussion)2 2V t t tP P E P
c c

   A x X .       (8.7)

Note that such an xE satisfying (8.7) necessarily exists when A(tP) ≠ 0. Also note, from (8.6), that this choice for xE makes 
F(tP, xE) strictly decreasing in tP at the selected value of tP. Now use (8.2) (equivalent to (6.6)) to deϐine tE. These steps have 
constructed a set of home coordinates (tE, xE) such that F(tP, xE) is strictly decreasing in tP at the solution tP, implying that the 
solution is not unique. Therefore, given that there is some point in time at which the acceleration is not zero, we conclude that 
there exist home coordinates (tE, xE) for which a solution for tP to (6.6) is not unique.

A fairly simple constraint imposed on the home coordinates (tE, xE) that is a sufϐicient condition for the solution for tP to 
(6.6) to be unique is for xE to be selected to make the right side of (8.6) positive for all tP. This constraint makes F(tP, xE) strictly 
increasing in tP for all tP, ensuring uniqueness.

9. Some identities for later use
The next section calculates the metric tensor in the traveling system. That analysis is less cumbersome if some identities are 

available, and one goal of this section is to make them available. A few other miscellaneous identities useful in later sections are 
also derived.

The ϐirst goal is to derive expressions for the derivatives of parallel parts and perpendicular parts of arbitrary spatial vectors 
as they are deϐined in (6.2). This is accomplished in several steps. The ϐirst step calculates the derivative of the magnitude of 
the velocity vector. The second step uses this result to calculate the derivative of the unit vector in the direction of the velocity 
vector, and the last step calculates derivative of parallel and perpendicular parts of arbitrary vectors.

Note from (6.2) that parallel and perpendicular parts of an arbitrary spatial vector W can be written as

     ,t tP P   W W n n W W W .        (9.1)

where the unit vector n is deϐined by

   
 
tPtP

V tP


V
n .           (9.2)

The ϐirst step that is used to calculate derivatives of parallel and perpendicular parts of W notes that

                 
2

2 2 2
dV t dV t d t t d tP P P P PV t t t tP P P P

d t d t d t d tP P P P
 


 

V V V
= = V V A

which gives

     dV tP t tP P
d tP

 A n .          (9.3)
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Now use

   
   

   
 

 
     

 
 1 1

2
d t t d t t dV t t dV tdP P P P P P PtP

d t d t V t V t d t d t V t V t d tV tP P P P P P P P PP
    

 
 
 

n V V V n
A

.

Substituting (9.3) into the above gives

 
          1d tP t t t tP P P P

d t V tP P
   

n
A A n n .       (9.4)

From the deϐinition (9.1) of parallel and perpendicular parts, we recognize the square bracket in (9.4) as the perpendicular 
part of the acceleration so

 
   1d tP tP

d t V tP P
 

n
A .          (9.5)

The next step takes the derivative of the parallel part of an arbitrary vector W using

              
d t d tdP Pt t t t tP P P P P

d t d t d tP P P
  

 
 
 

  
W W

W n n n n

            d t d tP Pt t t tP P P P
d t d tP P


 
 
 

 
n n

W n W n .

The ϐirst term on the right is seen to be the parallel part of the derivative of W. Substituting (9.5) into the second and third 
terms on the right produces

   
               1d t d tP P t t t t t tP P P P P P

d t d t V tP P P
   
 

    
 

  


W W
W A n W n A .   (9.6)

The derivative of the perpendicular part is obtained from

         d t t d td t d tP P PP P
d t d t d t d tP P P P

   
 W W WW W .

Substituting (9.6) into the above far right term while using

     d t d t d tP P P
d t d t d tP P P

 



   
   
   

W W W

gives 

   
               1d t d tP P t t t t t tP P P P P P

d t d t V tP P P

    


 
    

 
 

W W
W A n W n A .  (9.7)

Another identity useful in later sections is an expression for the derivative of γ(tP). Using (2.4) gives

 
1/2 3/2 3/22 2 2 2( ) 1 ( ) ( ) 1 ( ) ( ) ( )

1 1 12 2 2 2 22 2

d t d V t V t dV t V t d t tP P P P P P P
d t d t d t d tc c c c cP P P P


  

     
     
          
     

V V

which ϐinally gives

   1 3 ( ) ( )2
d tP t t tP P P

d t cP


 V A .         (9.8)
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Still another identity that will be useful later and is trivial to prove is

     12 2 21 2t t V tP P P
c

   .         (9.9)

Now consider an arbitrary trajectory, or worldline, seen in an arbitrary inertial system. This could be the worldline of 
the traveler’s clock in the home system but not necessarily. Along this worldline we can deϐine increments of proper time, 
denoted dτ, and increments of coordinate time, denoted dt. From these increments we can deϐine the derivative dt/dτ, which is 
a derivative deϐined on a curve. Two different expressions for this derivative are derived. Both start with the equation

     12 2
2d dt d d

c
   x x           (9.10a)

and then divide by (dτ)2 to get

2
1

1 2
dt d d

d d dc  
 
 
 
 


x x .          (9.10b)

One expression for dt/dτ is obtained by rearranging terms in (9.10) to get

1
1 2

dt d d

d d dc  
  

x x .          (9.11a)

A second expression for the same derivative is obtained by using the chain rule to write (9.10) as

2 2
1 1

1 12 2
dt dt d dt d d d dt

d d dt d dt dt dt dc c   
   

    
        

 
x x x x

and rearranging terms to get

1

1
1 2

dt

d d d

dt dtc



 

 
x x           (9.11b)

with γ deϐined by the second equality in (9.11b), consistent with the deϐinition in earlier sections. Combining (9.11a) with 
(9.11b) gives

1 1
1 21

1 2

d d

d dd d c
dt dtc

 
 







x x

x x          (9.11c)

when dτ is deϐined by (9.10).

10. Th e metric tensor in the traveling system
This section calculates the metric tensor in the traveling system. This metric, denoted g , is obtained by starting with the 

Lorentz metric, denoted g, applicable to the home system and then transforming it via the transformation of a double covariant 
tensor. This transformation is deϐined by

3

, ,
, 0

for , 0,1,2,3
k l

i j k li j
k l

x xg g i j
x x

 
 

          (10.1)

where we use the notation x0 = ctE, x1 = xE, x2 = yE, x3 = zE, with corresponding notation for the traveler coordinates. The 
Lorentz metric is diagonal with g0,0 = 1 and all other diagonal elements equal to ‒1, so (10.1) becomes

0 0 3

,
1

for , 0,1,2,3
k k

i j i j i j
k

x x x xg i j
x x x x

   
  
   

Recognizing the sum on the right as a three dimensional (spatial) vector dot product gives
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2
, for , 0,1,2,3E E E E

i j i j i j

t tg c i j
x x x x

   
  

   
x x .      (10.2)

It is evident from (3.1) that partial derivatives that treat , , , and E E E Et x y z  as independent variables (meaning that a partial 

derivative that varies one variable in the list does so with all others in the list held ϐixed) also treat , , , and P E E Et x y z  as 

independent variables. Therefore, a derivative with respect Et can be expressed in terms of a derivative with respect to Pt by 
using

1

P E

E E P P P

d t d t
t d t t d t t


   

      

Using (3.1) and (2.3) to evaluate the derivative in the parenthesis on the right allows the above to be written as

  .tPt tE P


 


 
           (10.3)

Using (10.3) with (10.2), components of the metric tensor can be written as

   
2

1 12 ,0,0 0,12
t t t

g t g t cP Pt t t t x c t xcP P P P P
 

      
   

      

             
 

x x x x     (10.4a)

   1 1
,0,2 0,3

t t t t
g t c g t cP Pt y c t y t z c t zP P P P

 
       

   
       

   
   
   

 
x x x x     (10.4b)

2
2 2,1,1 1,2

t t t
g c g c

x x x x y x y

      
   

      

 
 
 

 
x x x x       (10.4c)

2
2 2,1,3 2,2

t t t
g c g c

x z x z y y y

      
   

      

 
 
 

 
x x x x       (10.4d)

2
2 2,2,3 3,3

t t t
g c g c

y z y z z z z

      
   

      

 
 
 

 
x x x x       (10.4e)

where we shortened the notation by omitting the subscripts E to the event coordinates , ,E E Ex y z  and tE, xE, yE, and zE. The 

remaining off-diagonal elements of the metric tensor are implied by the symmetry condition , ,i j j ig g .

The next step is to calculate the derivatives in (10.4). One equation needed for this is (3.3a), which is written below with the 
E subscripts omitted as

   
2

tPt t tP P
c

 
V x

.          (10.5)

The other needed equation is (3.3b). It is convenient to write it in terms of parallel and perpendicular parts. Doing so while 
omitting the E subscripts to shorten the notation gives 

   t tP P   x X x x .          (10.6)

The ϐirst derivative to be calculated is obtained from (10.5), (9.8), and a direct application of the product rule which gives

        1 131 ( ) ( )4 2
t

t t t t t tP P P P P P
t c cP

 


  


    V A V x A x

which can also be written as
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         1 13 21 ( ) ( ) ( )4 2
t

t V t t t t t tP P P P P P P
t c cP

 


  


    n A n x A x

.

Now use

     ( ) ( ) ( ) ( ) ( ) ( )t t t t t t tP P P P P P P        A x A n n x n A n x

to write the above as

     1 13 21 ( ) ( )4 2
t

t V t t t tP P P P P
t c cP

 


  


 A x A x .

Next, use

     ( ) ( ) ( ) ( ) ( ) ( )t t t t t t tP P P P P P P        A x A n n x n A n x

to write the above as

     1 13 21 ( ) ( )4 2
t

t V t t t tP P P P P
t c cP

 


  


 A x A x
.

Finally, use the identity (9.9) to write the above as

   1 131 ( ) ( )2 2
t

t t t tP P P P
t c cP

 


   


 A x A x .       (10.7a)

For the next derivative it is convenient to write (10.6) as

    1t tP P      x X x x

so

      1
tPt tP P

t t tP P P





   

  
  




xx
V x .

Using (9.6) and (9.8) gives

                  1 13 ( ) ( ) 12t t t t t t t t tP P P P P P P P P
t V tcP P

 


     


       
x

V V A x x A n x n A Regrouping terms 

and using  ( ) ( )P Pt t x x n n  and ( ) ( ) ( )P P Pt V t tV n  allows the above to be rewritten as

tP






x

              1 13 ( ) ( ) ( ) ( ) 12V t t V t t t t t t tP P P P P P P P P
V tc P

    
 

       
 

  n A x n x A n

        1
1t t tP P P

V tP
     x n A .

Once more we use

     ( ) ( ) ( ) ( ) ( ) ( )t t t t t t tP P P P P P P        A x A n n x n A x n

to write the above as
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tP






x

           1 13 ( ) ( ) 12V t t V t t t t tP P P P P P P
V tc P

    
 

       
 

 A x x A n

        1
1t t tP P P

V tP
     x n A .       (10.7b)

The next derivatives are simpler to calculate but some notation is needed. Let e(x), e(y), and e(z) be the unit vectors (in the context 
of three dimensional Euclidean geometry) in the directions of the x-axis, y-axis, and z-axis, respectively, in the traveling system. 
The subscripts appear in parentheses to emphasize that they are vector names or labels as opposed to vector components (the 
labels are x, y, or z instead of 1, 2, or 3 because numerical labels will denote other vectors in the next section). Using this notation 
we easily obtain from (10.5) that

   1
( )2

t
t tP x P

x c






e V          (10.7c)

   1
( )2

t
t tP y P

y c






e V          (10.7d)

   1
( )2

t
t tP z P

z c






e V .         (10.7e)

To calculate the remaining derivatives, we note that partial derivatives that hold tP ϐixed, so they hold n(tP) ϐixed, commute 
with the taking of parallel parts or perpendicular parts. Speciϐically,

,( ) ( )x x
x x x x

      
   



   
   
   






x xx x
e e

with analogous results for y  and z  derivatives. Using this fact with (10.6) easily gives

 ( ) ( )tx P x
x




 



x

e e          (10.7f)

 ( ) ( )ty P y
y




 



x

e e          (10.7g)

 ( ) ( )tz P z
z




 



x

e e .         (10.7h)

Various products of derivatives are prepared in advance to assist with the evaluation of the metric tensor. We ϐirst shorten 
the notation by deϐining T-functions that are characterized by the property of being zero if either x  or A(tP) are null vectors. 
They are deϐined by

   1 3, ( )1 2T t t tP P P
c

 x A x         (10.8a)

 
 
1

, ( )2 2T t tP P
V tP

  x A x         (10.8b)

          1
, 1t t t tP P P P

V tP
     T x x n A .      (10.8c)
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where the perpendicular symbol is included as a reminder that the vector  ,PtT x  is orthogonal (in the context of three-
dimensional Euclidean geometry) to n(tP) (recall that n(tP) is the unit vector, in the context of three-dimensional Euclidean 
geometry, in the direction of V(tP)). With these deϐinitions we can write (10.7a) and (10.7b) as

       
2

1 , ,1 22
V tt PT t t T tP P P

t cP



  


x x        (10.9a)

            1 , 1 , ,1 2V t T t t T t t tP P P P P P
tP




     


  
x

x x n T x .    (10.9b)

We now list several products of derivatives. We temporarily shorten the notation by not displaying the arguments of the 
various functions. Full notation will be restored in ϐinal results derived for the metric tensor. It is evident from (10.9a) that

22 2
1 1 22

t V
T T

t cP



  



  
       

.         (10.10a)

Also, orthogonality between  ,PtT x  and n(tP) together with (10.9b) gives

  22 1 11 2V T T
t tP P


 

      
 

 
x x

T T .       (10.10b)

We next use (10.9a) with (10.7c) to get

21
1 1 2 ( )2 2

t t V
V T T x

t x c cP
 

 
  

 

 
  
 

e n .       (10.11a)

Next use (10.9b) with (10.7f) while paying attention to which vectors are parallel to each other, which are orthogonal to each 

other, and use the fact that    ( ) ( )t tP x P x n e n e  to get

  1 11 2 ( ) ( )V T T x x
t xP

 
 

      
 

  
x x

n e T e .      (10.11b)

The next products considered are obtained from (10.7c) and (10.7f) which give

2
21 2 2

( )4
t

V x
x c







       
e n          (10.12a)

( ) ( ) ( ) ( )x x x x
x x

 
 

   
 

        
x x

e e e e .

Expanding the product in the second equation gives

2
( ) ( ) ( ) ( )x x x x

x x


 
  

 
   

x x
e e e e .

But we also have

1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x x x x x x x x x x                    e e e e e e e e e e

or

1( ) ( ) ( ) ( )x x x x    e e e e

so the above equation becomes



An Alternate Presentation of a Generalization of the Lorentz Transformation to Allow Acceleration of a Coordinate System

 www.physicsresjournal.com 194https://doi.org/10.29328/journal.ijpra.1001127

21 1 ( ) ( )x x
x x


 

  
 

 
   

x x
e e .

We now use the identity (9.9) to write the above as

    21 1 12 2 2 2 2 21 1 1( ) ( ) ( ) ( ) ( )2 2 2V V Vx x x x x
x x c c c

  
 

     
 

               
x x

e e e n n e n n e n

or 
21 2 21 ( )2 V x

x x c


 
 

 
   

x x
e n .        (10.12b)

The last pair of products considered are obtained from (10.7c), (10.7d), (10.7f), and (10.7g). These give

1 2 2
( ) ( )4

t t
V x y

x y c


 


 
       e n e n         (10.13a)

( ) ( ) ( ) ( )x x y y
x y

 
 

   
 

        
x x

e e e e
.

Expanding the product in the second equation gives

2
( ) ( ) ( ) ( )x y x y

x y


 
  

 
   

x x
e e e e

.

But we also have

0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x y x x y y x y x y                    e e e e e e e e e e

or

( ) ( ) ( ) ( )x y x y    e e e e

so the above equation becomes

2 1 ( ) ( )x y
x y


 

 
 

 
   

x x
e e .

We now use the identity (9.9) to write the above as

      1 1 12 2 2 2 2 2
( ) ( ) ( ) ( ) ( ) ( )2 2 2V V Vx y x y x y

x y c c c
  

 
  

 
   
          

x x
e e e n n e n n e n e n

or

1 2 2
( ) ( )2 V x y

x y c


 


 
        

x x
e n e n .       (10.13b)

We can now assemble various products of derivatives to produce the metric tensor. The two equations in (10.10) together 
with (10.4) give

       
22

2 1 , ,0,0 1 22
V tPg t T t T tP P P

c
   

  
 
  

x x

                
2 2 12 21 , 1 , , ,1 22 2

V tPt T t t T t t t tP P P P P P P
c c

           x x T x T x
. (10.14a)

Another component is obtained from the two equations in (10.11) together with (10.4) which give
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21 210,1 2 ( ) ( )2
V

g V T x xc c
      
    
   
    

 n e T e

where we used ( ) ( ) ( ) ( )x x x x          T e T e e T e . Expressing the parenthesis in terms of γ gives.

            1
1 , ,0,1 2 ( ) ( )g t V t t T t t tP P P P P Px xc

        x n e T x e .    (10.14b)

Similarly

            1
1 , ,0,2 2 ( ) ( )g t V t t T t t tP P P P P Py yc

        x n e T x e .    (10.14c)

            1
1 , ,0,3 2 ( ) ( )g t V t t T t t tP P P P P Pz zc

        x n e T x e .    (10.14d)

The next diagonal element, 1,1g , is obtained by combining the two equations in (10.12) with (10.4). Including analogous 

results for 2,2g  and 3,3g  we obtain

1,1 2,2 3,3 1g g g    .          (10.14e)

The off-diagonal element 1,2g is obtained from the two equations in (10.13) together with (10.4). The result is obvious, and 
including analogous results for other terms gives

1,2 1,3 2,3 0g g g   .           (10.14f)

All other components of the metric tensor are implied by the symmetric condition , ,i j j ig g .

The equations in (10.14) give the components of the metric tensor as functions of tP and x . However, tP is itself a function of 
t , obtained by inverting (3.1) which is written below with the subscript E omitted as

 Pt t .            (10.15)

Recognizing this implicit dependence on t , (10.14) gives the components of the metric tensor as functions of t  and x .

Recall that the T-functions are each zero if either x = 0 or tP is a point at which A(tP) = 0. If either of these conditions are 
satisϐied, so all T-functions are zero, the metric reduces to the Lorentz metric. This is seen by a casual inspection for all elements 
except 0,0g . That 0,0g  = 1 when all T-functions are zero is seen by noting that (10.14a) reduces to

     2
2 2

0,0 2
V tPg t tP P

c
  

when all T-functions are zero. This gives 0,0g  = 1 via (9.9), conϐirming that the metric reduces to the Lorentz metric if either 
x  = 0 or tP is a point at which A(tP) = 0.

11. 4-Vectors
Previous sections explain how various quantities can be calculated when the given information is the trajectory of the 

traveler’s clock relative to the home system and expressed in terms of the home system coordinates. However, the next section 
gives an example in which this trajectory is not the given information. Instead, it is necessary to deduce this trajectory from 
other information that is given. Quantities called 4-vectors provide computational conveniences that make this deduction easier, 
so a review of 4-vectors is given in this section. This review emphasizes a distinction between vectors and vector components. 
Also, the notation used here uses bold font for 4-vectors, as was previously done for three-dimensional spatial vectors, but 
distinguishes between them by using cursive font for 4-vectors and block letters for three-dimensional spatial vectors.

A good illustrative example of a 4-vector is the 4-velocity, denoted V in the present discussion (V will be an arbitrary 4-vector 
in later discussions in this section) of some particle at some point on its worldline. This will be deϐined after explaining one of 
the distinctions between it and the three-dimensional velocity V which is the derivative of spatial coordinates with respect to 
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the time coordinate. The three-dimensional velocity of the same particle is a different vector in different reference frames that 
move relative to each other. In contrast, the 4-velocity is the same vector in different reference frames, it is only its components 
with respect to different basis vectors that are different. Therefore the 4-velocity is completely deϐined when we specify its 
components in any convenient set of basis vectors. It is convenient to use the basis vectors assigned to the home system to 
specify V, but we must ϐirst decide on what the home system basis vectors will be. We will use the same basis vectors for the 
home system that were denoted e(x), e(y), and e(z) that were used in the traveling system7, except that we include another vector 
e(ct) in the direction of the time axis. We also change notation by using e(0), e(1), e(2), and e(3) in cursive font and with integers 
for indices, instead of e(ct), e(x), e(y), and e(z), to emphasize four dimensions. As discussed above, the 4-velocity is completely 
determined in all reference frames if we specify its components in the home basis vectors. It is therefore completely deϐined by 
the equation

0 1 2 3

(0) (1) (2) (3)
d x d x d x d x

d d d d   
   V e e e eV e e e e

where dτ is an increment of proper time along the particle’s worldline, and we use the notation

0 1 2 3, , ,x ct x x x y x z    .       (11.1)

The velocity vector was selected for illustration of a 4-vector but in the remainder of this section, V is an arbitrary 4-vector. 
It is uniquely determined (as shown later) in all systems if we specify the numbers V 0, V 1, V 2, and V 3 satisfying

0 1 2 3
(0) (1) (2) (3)V V V V   V e e e eV e e e e .        (11.2)

The coefϐicients to the basis vectors in such an expansion are called the contravariant components of V8. We use the notation 
in which Vi denotes the ith contravariant component in whatever inertial system that was selected to be called the unbarred 
system and that uses the basis vectors in (11.2). Therefore (11.2) can also be written as

0 1 2 3
(0) (1) (2) (3)   V V e V e V e V eV V e V e V e V e .        (11.3)

Now consider the contravariant components in another system, called the barred system, that uses basis vectors 
(0) (1) (2) (3),  ,  ,  and e e e ee e e e . Again, the contravariant components in that system are the coefϐicients in the expansion in those basis 

vectors, so if we let iV denote the ith contravariant component in the barred system we have

0 1 2 3
(0) (1) (2) (3)   V V e V e V e V eV V e V e V e V e .       (11.4)

However, in order for contravariant components in different systems to be related by the transformations traditionally 
used in tensor analysis to deϐine contravariant components, the basis vectors in the barred system are not arbitrary. They 
are tangent vectors to coordinate curves and are uniquely determined after the coordinates in the barred system have been 
selected. Denoting these coordinates as 0 1 2 3( , , , )x x x x , or more brieϐly as x  9,the barred basis vectors, which can be functions 
of the barred coordinates, are deϐined by

  for 0,1, 2,3( ) iii x


 


x
e xe x         (11.5a)

where x is deϐined by

0 1 2 3
(0) (1) (2) (3)x x x x   x e e e ex e e e e         (11.5b)

so (11.5a) becomes

 
0 1 2 3

( ) (0) (1) (2) (3) ( ) for 0,1,2,3
j

i ji i i i i
j

x x x x x i
x x x x x

    
     
    e x e e e e ee x e e e e e    (11.6)

7It will be seen later that different basis vectors will be needed for the traveling system in order for vector components to obey the transformations of 
contravariant vector components. 
8In contrast, covariant components are defi ned in terms of dot products. There is no distinction between contravariant and covariant components when the 
basis vectors are an orthonormal set, but it will be seen later that the basis vectors used here are not an orthonormal set as defi ned by a solid dot-product 
denoted   and defi ned later (the basis vectors are mutually orthogonal but not all of them have unit norm), so there is a distinction between contravariant 
and covariant components. 
9The need for inventing yet another notation is avoided by making an exception to the notational convention in the case of x . The notation is that of a 
4-vector, but the intended meaning is nothing more than an abbreviation for the set of coordinates 0 1 2 3( , , , )x x x x .
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with the understanding that a summation that does not explicitly show the range of the index uses the range of 0 to 3 (the 
Einstein summation convention is not used because there are exceptions to the rule, and it is not difϐicult to include a summation 
symbol to avoid any possible confusion)10.

An important and convenient consequence of deϐining the barred basis vectors by (11.6) is that the transformation between 
basis vectors can easily be inverted to solve for the unbarred basis vectors in terms of the barred basis vectors. To perform this 
inversion, note that the Kronecker delta can be expressed as

j
j

k k

x
x

 



.

When the selected space-time coordinates are in neighborhoods for which there is a locally invertible transformation 
between barred and unbarred coordinates, the chain rule applied to the above gives

j i
j

k i k
i

x x
x x

  


  .          (11.7)

Now multiply both sides of (11.6) by /i kx x   and sum in i to get

 ( ) ( )
,

i j i

i jk i k
i j i

x x x
x x x

  


   e x ee x e

Next, we use (11.7) to write this as

 ( ) ( ) ( )

i
j

i k j kk
i j

x
x


 

 e x e ee x e e .

Changing dummy symbols gives

 ( ) ( )

j

i ji
j

x
x




e e xe e x          (11.8)

which is the inverse transform between basis vectors.

We can now conϐirm that contravariant components satisfy the transformation typically used to deϐine contravariant 
components. Combine (11.3) with (11.4) to get

( ) ( )( )i i
i i

i i
 V e x V eV e x V e .         (11.9)

Now substitute (11.8) into the right side of (11.9) and interchange dummy symbols to get

   ( ) ( )
,

i
i j

i ij
i i j

x
x




 V e x V e xV e x V e x . 

The barred basis vectors are linearly independent so the above gives
i

i j
j

j

x
x




V VV V           (11.10)

which is the transformation typically taken to be the deϐinition of contravariant vector components.

Covariant vector components can also be deϐined but to help with notation we start with a deϐinition of the solid dot product 
denoted  . This dot product between two arbitrary 4-vectors V and U is deϐined by

,
,

i j
i j

i j
g V U V UV U V U           (11.11a)

where the superscripts on the right denote contravariant components in the unbarred system, and g is the metric tensor in 
the unbarred system. The unbarred system is inertial and rectangular, so its metric tensor is the Lorentz metric, which allows 

 10It might be noted that [1, p. 169] stated that the derivative 0/ x   is a derivative with respect to proper time, making (0)e in (11.6) the 4-velocity. In reality, 0x  is 
proper time only on the worldline of the traveler’s origin. Therefore, (0)e is the 4-velocity when evaluated at E  0x  but is more complicated when evaluated 
at E  0x . The general construction of the barred basis vectors combines (11.6) with (10.7).
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us to rewrite (11.11) as
3

0 0

1

i i

i
  V U V U V UV U V U V U .         (11.11b)

However, the notation in (11.11a) is more convenient than the notation in (11.11b) for deriving an expression for the dot 
product in the barred system. Recall that the barred metric tensor is deϐined by the transformation (10.1), and we already 
established the transformation (11.10) for contravariant components of 4-vectors. We can show via (11.7) that the composite 
of these transformations applied to the right side of (11.11a) produces

,
,

i j
i j

i j
g V U V UV U V U .          (11.11c)

In summary, three expressions derived (so far) for solid dot products are given by the three equations in (11.11) 11. 

Special interesting cases are dot products between basis vectors. Recall that the contravariant component ( )
j

ie  is the jth 
coefϐicient in the expansion of ( )ie in the unbarred basis vectors. Similarly, the contravariant component ( )

j
ie  is the jth coefϐicient 

in the expansion of ( )ie in the barred basis vectors 12. Therefore we have

( ) ( )
j j j

i i i e ee e .          (11.12a)

Also, the deϐinition of contravariant components as coefϐicients in expansions together with (11.6) and (11.8) give

   ( ) ( ),
j j

j j
i ii i

x x
x x

 
 
 

e x e xe x e x         (11.12b)

where a coordinate dependence of ( )
j

ie  is indicated and is due to a coordinate dependence of the basis vectors. Substituting 
(11.12a) into (11.11a) for the unbarred case, and into (11.11c) for the barred case, gives

( ) ( ) , ( ) ( ) ,,i j i j i j i jg g   e e e ee e e e .        (11.13)

Listing the individual products for the unbarred case gives

(0) (0) ( ) ( ) ( ) ( )1, 1 for 1, 2,3, 0 for i i i ji i j        e e e e e ee e e e e e .    (11.14)

Note that the middle equation is one of those exceptions to the Einstein summation convention and is an example of the 
reason for not using that convention.

The covariant components of an arbitrary 4-vector V in the unbarred and barred systems, with the ith component denoted 
iV  in the unbarred system and denoted iV  in the barred system, are deϐined by

( ) ( )i i ii   V V e V V eV V e V V e .         (11.15)

The transformation between barred and unbarred covariant components is easily derived by starting with (11.6) to get

( ) ( ) ( )

j j

i j ji i
j j

x x
x x

 
    

  V e V e V eV e V e V e

and using (11.15) gives
j

ji i
j

x
x




V VV V           (11.16)

which is the transformation traditionally used to deϐine covariant vector components 13.
Covariant and contravariant components of vectors can be related to each other by using (11.11) to get

3
0 0

( ) , ( ) ( ) ( ) ( ) ( ) , ( )
, 1 ,

, ,j k j j j k
i j k i i i i i j k i

j k j j k
g g



        V e V e V e V e V e V e V eV e V e V e V e V e V e V e .

11 Symmetry of the transformation (10.1) together with symmetry of the Lorentz metric implies symmetry of all metrics so the order of dot-product multiplication 
is seen to be reversible in any of the expressions used for it.
12We sometimes shorten the notation by not displaying the coordinate dependence of the barred basis vectors, but when that is done, it must be remembered 
that they may be functions of coordinates. 
13Covariant components defi ned by other dot products (e.g., a Euclidean dot product in which the unbarred metric tensor is the identity matrix, and the 
barred metric tensor is defi ned by (10.1)), will also satisfy (11.16) providing that the defi nition of the dot product is used consistently as needed to satisfy (11.11a) 
and (11.11c). The case in which the metric in the unbarred system is the Lorentz metric, and produces (11.11b), is assumed throughout this analysis but is not 
required by (11.16).
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Substituting (11.12a) and (11.15) into the above gives

, ,
j j

i j i i j
j j

g g  V V VV V V          (11.17a)

0
0 , for 1, 2,3i

i i   V V V VV V V V        (11.17b)

, ,
j j

j i i ji
j j

g g  V V VV V V          (11.17c)

where we used the fact that the metric tensors are symmetric.

Several expressions for dot products were listed in (11.11). Two more expressions are obtained by combining (11.17a) with 
(11.11a) and combining (11.17c) with (11.11c). The results are

i
i

i
 V U = V UV U = V U           (11.18a)

i
i

i
 V U V UV U V U .          (11.18b)

Now consider an arbitrary worldline, the trajectory in space-time of some moving point, as seen by the inertial unbarred 
system. Using equations in Section 2, an increment of proper time along this worldline can be obtained by taking the differential 
of (2.3) and then using (2.4) to get

2

2
( )1 V td dt

c
  

which can also be written as

      
2 22 2 0

2 2
( ) 11 V td dt dx d d

c c


 
    
 

x x .      (11.19)

If we now deϐine the 4-vector

0 1 2 3
(0) (1) (2) (3)d dx dx dx dx   x e e e ex e e e e

and use (11.11b) to express d dx xx x and compare that expression to the right side of (11.19) we ϐind that (11.19) can be 
written as

 2
2

1d d d
c

  x xx x .          (11.20)

An implication regarding the equivalence between proper time and coordinate time, when the worldline that proper time 
refers to is that of the clock measuring coordinate time, is obtained by using (11.11c) to write (11.20) as 

 2
,2

,

1 i j
i j

i j
d g d d

c
   x xx x .

If we now take the barred system to be attached to the moving point, the differentials of spatial coordinates are zero so the 
above reduces to

 2 0 0
0,02

1d g d d
c

  x xx x .

It was concluded at the end of Section 11 that if we take the origin (the location of the clock) of the barred system to be 
attached to the moving point (the spatial coordinates of the point are zero in the barred system) then 0,0g  = 1 so the above 
becomes

01d d
c

  x (comoving system).        (11.21)

This is consistent with the conclusion already used in Section 2, but obtained from the hypothesis (1.1), that the time 
coordinate of the traveling system at any given point on the worldline of the systems clock is equal to the proper time assigned 
to that point on the worldline of the systems clock.

A second implication of (11.20) is that dτ is a scaler invariant. This implies that if V is an arbitrary 4-vector deϐined on each 
point on the given worldline, the derivative dV /dτ, which is a derivative on a curve, is another 4-vector. From this fact we 
can derive the product rule for derivatives of dot products. Using the expression (11.11a) for dot products, together with the 
ordinary product rule and the fact that the Lorentz metric is constant, we obtain
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, ,
, ,

i j
j i

i j i j
i j i j

d d dg g
d d d  


  V U V UV U V UU VU V .        (11.22)

We next use the fact that /id dV and /id dU  are contravariant components of 4-vectors in the unbarred system. This 
fact together with (11.11a) gives

, ,
, ,

,
i j

j i
i j i j

i j i j

d d d dg g
d d d d   

    V V U UV V U UU U V VU U V V .       (11.23)

Combining (11.22) with (11.23) produces the product rule

d d d
d d d  


   
V U V UV U V UU VU V .          (11.24)

Note that expressing components in the unbarred system is the simplest way to derive (11.24). If components were expressed 
in the barred system, there would be two complications. First, the metric tensor in the barred system need not be constant so 
there would be a third term on the right side of the equation analogous to (11.22). Second, /id dV  and /id dU  are not in 
general contravariant components of 4-vectors in the barred system, so the equation analogous to (11.23) is incorrect. Hence 
the unbarred system provides the simplest derivation of (11.24).

The previous paragraph stated that /id dV and /id dU  are not in general contravariant components of 4-vectors in 
the barred system. It is interesting to ϐind out what the contravariant components of dV/dτ are in the barred system. These 
components can be derived by using the product rule with (11.4) to get

( )
( )

i
ii

i
i i

dd d
d d d  

  
eV VV V e Ve V .         (11.25)

Note that (11.6) together with the chain rule gives

  2
( )

( ) ( )
,

j j k
i

j ji i k
j j k

d d x x d x
d d x x x d  

     
           
 

e xe x
e ee e .

To express this in terms of the barred basis vectors we substitute (11.8) into the right side of the above to get

   
2

( )
( )

, ,

l k j
i

ki j l
j k l

d x x d x
d x x x d 

  
     


e xe x
e xe x .        (11.26)

To shorten the notation, deϐine the Christoffel symbol by
2

,

l k

i j l
l

k x x
i j x x x

    
        
           (11.27)

so (11.26) becomes

   ( )
( )

, ,

j
i

k
j k

d k d x
i jd d 
 

  
 


e xe x

e xe x .         (11.28)

From the deϐinition of contravariant components as coefϐicients in expansions, we conclude from (11.28) that

 ( )

,

k j
i

j

d k d x
i jd d 

   
   

  


e xe x .          (11.29)

Also, substituting (11.28) into (11.25) gives

( )

i

i
i

d
d


 
V VV V e            (11.30)

where we deϐine

, ,

i i j
k

j k

id d x
j kd d


  

 
   

 
V VV V V .         (11.31)
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From the deϐinition of contravariant components as coefϐicients in expansions, we conclude from (11.30) that

i id
d


 

   
 
V VV V .           (11.32)

As a partial summary of this section, two ways in which basis vectors and contravariant vector components can be changed 
have been described. The ϐirst way changes coordinate systems but with all quantities evaluated at a common space-time point. 
The second way uses a common coordinate system but evaluates basis vectors and contravariant vector components at different 
space-time points. A summary of each case is reviewed below, and some implications are discussed.

First consider the case of two coordinate systems, a barred system and a double-barred system, but with all quantities 
evaluated at a single common space-time point, so (11.6) and (11.10) give

( ) ( ) ( ) ( ),
j j

i j i ji i
j j

x x
x x

 
 

  e e e ee e e e          (11.33a)

,
i i

i j i j
j j

j j

x x
x x

 
 

  V V V VV V V V         (11.33b)

where no arguments need to be displayed because it is understood that basis vectors, contravariant vector components, 
and partial derivatives of coordinates are all evaluated at the same space-time point. An implication derived below is the 
relationship between double-barred quantities and single-barred quantities. This can be derived by substituting (11.8) into the 
second equation in (11.33a) to get

( ) ( ) ( )
,

j k k j

i j ji j j i
j k k j

x x x x
x x x x

    
       
  e e ee e e .

The parenthesis on the far right is the chain rule expansion of kx / ix  so the above becomes

( ) ( )

k

i ki
k

x
x




e ee e            (11.34a)

when all basis vectors and partial derivatives of coordinates are evaluated at the same space-time point. Similar steps give

i
i k

k
k

x
x




V VV V            (11.34b)

which applies when all vector components and partial derivatives of coordinates are evaluated at the same space-time point.

Now consider the second way of changing basis vectors and contravariant vector components, which is to use only one 
coordinate system but with quantities evaluated at different space-time points. Consider two space-time points P1 and P2 so 
(11.6) and (11.10) give

( ) 1 1 ( ) ( ) 2 2 ( )( ) ( , ( ) (
j j

i j i ji i
j j

x xP P P P
x x

 
 

  e ) e e ) ee ) e e ) e        (11.35a)

1 1 2 2( ( , ( (
i i

i j i j
j j

j j

x xP P P P
x x

 
 

  V ) ) V V ) ) VV ) ) V V ) ) V        (11.35b)

where the unbarred basis vectors are constant, and we are treating the case in which V is a constant vector, so its unbarred 
components are constant. The notation in (11.35) is displaying a dependence of the partial derivatives of coordinates on the 
space-time point of evaluation. An implication is the relationship between corresponding quantities evaluated at different 
points. For the basis vectors this is done by integrating (11.28). For vector components, it is important to recognize that the 
case considered is that in which  is a constant vector so the left side of (11.32) is zero, implying that the right side is zero, 
implying that the right side of (11.31) is zero. We therefore relate vector components evaluated at P2 to those evaluated at P1 
by integrating

,
0 (when  is a constant vector)

,

i j
k

j k

id d x
j kd d 

 
  

 
V V VV V .     (11.36)
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12. An example: Constant acceleration felt by traveler
The example in this section is one in which the velocity of the traveler relative to the home system and expressed as a function 

of time in the home system is not the immediately given information. Instead, this must be deducted from other information 
that will be given. Invariance of solid dot products between 4-vectors facilitates this deduction so the given information will 
be a statement about the 4-vector version of acceleration. This 4-vector, denoted A, is deϐined in general in terms of the home 
system basis vectors by

2

( )2

i

i
i

d x
d

A eA e .           (12.1)

The example in this section is the special case in which the acceleration has a constant spatial direction, say in the x-direction. 
The remaining given information, which implies (after some deduction to follow) the traveler worldline as expressed in home 
coordinates, is

2a  A AA A          `  (12.2)

where a is a positive constant. Expressing the dot product in any inertial system produces
2 22 2

2
2 2

d x d tc a
d d 

   
       

   
A AA A          (12.3)

where we now write x instead of x1. An alternate way to express (12.3) is obtained by ϐirst using (9.11a) to derive an 
expression for d2t/dτ2, which is obtained from

22 2

2 2 2 22

2

1 1 11
11

d t d dx dx d x
d d dd c c ddx

dc

   



    
     

 

and then substitute this into (12.3) and combine some terms to get
22

2
2 2

2

1
11

d x a
ddx

c d




 
    

     
 

A AA A .         (12.4)

From (12.4) we can recognize the physical interpretation of the example considered here. This is seen by letting the 
acceleration refer to the traveler’s system and letting the inertial system be the P-system, the inertial system momentarily at 
rest in the traveler’s system. In the P-system, and at the time it is at rest in the traveler’s system, the velocity dx/dt is zero, and 
there is no distinction between τ derivatives and t derivatives, so (12.4) reduces to

2
in -system when at rest in traveler's system2

d x
a P

d t
 .

If the traveler is carrying an accelerometer, it will measure an acceleration equal to a when at rest in the P-system, but 
the point P is an arbitrary point on the traveler’s worldline, so the physical interpretation of this example 4-vector A is that it 
produces the case in which the traveler feels (or measures via an accelerometer) a constant acceleration equal to a [1, p. 166].

The next application of (12.4) is to determine the traveler’s worldline as seen in the home system. Taking the sign of a to be 
the same as the sign of d2x/dτ2, (12.4) gives

22

2 2
11d x dxa

d c d 
    
 

.          (12.5)

Endpoint conditions are not important to the analysis as long as singularities are avoided as a → 0. A particular choice that 
avoids singularities takes the endpoint conditions to be x = 0 and dx/dτ = 0 at τ = 0. The solution to (12.5) subject to these 
endpoint conditions is easily veriϐied to be

2
cosh 1

c a
x

a c
 

  
    

.          (12.6a)
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Substituting this into (9.11a) gives

cosh
dt a

d c





 
 
 

.

The solution satisfying t = 0 when τ = 0 is

sinh
c a

t
a c


 
 
 

.           (12.6b)

Note that if we take the limit as the acceleration a → 0 we ϐind, via L’Hôpital’s rule, that t → τ while x → 0 for all τ, which is the 
expected result for the selected initial conditions without acceleration.

An identity relating hyperbolic functions allows (12.6a) to be written as

2
21 sinh 1

c a
x

a c
  

  
  

  
.

Combining this with (12.6b) gives

22
1 1

c a
x t

a c
  

       

.          (12.7)

A plot of x versus t produced by (12.7) produces a hyperbola, so this example is often called hyperbolic motion [1, p. 166]. 
Another important quantity for this example is the coordinate velocity (not a 4-vector) deϐined to be dx/dt, which we ϐind by 
differentiating (12.7) to be given by

2
1

d x at

d t a
t

c




 
 
 

.           (12.8)

Also, substituting (12.8) into (9.11b), using the second equality in (9.11b) gives

2
1

a
t

c
  

 
 
 

.           (12.9)

As a reminder that the calculated x and dx/dt refer to the worldline of the traveler’s clock at an arbitrary point P on the 
worldline, with this point having time coordinate tp in the home system, we go back to the notation in Sections 3 and 6. Instead 
of (12.7) we write

22
( ) 1 1

c a
X t tP Pa c

  
       

.         (12.10a)

Instead of (12.8) we write

( )
2

1

atPV tP
a

tPc




 
 
 

.          (12.10b)

Instead of (12.9) we write

2
( ) 1

a
t tP P

c
  

 
 
 

          (12.10c)

and instead of (12.6b) we write
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1( ) sinh
c a

t tP Pa c
 

 
 
 

.         (12.10d)

When difϐiculties are encountered regarding the existence of traveler coordinates to be calculated for a given space-time 
point, i.e., calculated from a given set of home coordinates, they are encountered in the ϐirst step of the calculation of traveler 
coordinates, which is to solve (6.6) for tP. The example in this section provides an illustration. Substituting (12.10) into (6.6), the 
equation to be solved for tP becomes

1 2 2
1

a tPt xE E
c a

tP
c

 



 
 
   

 
 

.         (12.11)

First consider the case in which the parenthesis on the right side of (12.11) is positive. It is easy to show that this condition 
makes the right side of (12.11) a strictly increasing function of tP, implying that the solution of (12.11) for tP is unique if it exists. 
Existence requires that the left side, tE, be in the range of the function of tP on the right. The function on the right is zero at tP = 
0, and it is easy to show that the function on the right asymptotically approaches the value c/a + xE/c as tP → ∞. We therefore 
conclude that:

If

                                           1 02
then the event  has coordinates in the traveler's system, for the example

2in which , if and only if 

                                       

a
xE

c
E

a

 

  A AA A

  0 .
c xEtE a c

  

 
 
 
 
 
 
 
  

     (12.12)

The upper bound for tE in (12.12) can be explained in terms of time dilation. Imagine a clock stationary at the location xE in 
the home system. This clock as seen by the traveler runs slower and slower as the traveler speeds up in the home system, in 
such a way that the clock display, as seen by the traveler, asymptotically approaches a ϐinite limiting value. This limiting value is 
the upper bound in (12.12). A more rigorous discussion of this time dilation can be given, for the worldline example considered 
in this section, as follows. Recall that (3.4) is the version of time dilation in which the home observer is observing the traveler’s 
clock. For the example in this section, we are now able to calculate the version of time dilation in which the traveler is observing 
a home clock located at xE. We start by combining (6.8a) with (12.10d) and invert the equation to get

sinh
c a

t tP Ea c


 
 
 

.           (12.13)

Substituting (12.13) into (12.11) and using some identities for hyperbolic functions gives

   1
( )2t t t tE P P E P

c
  V x X .          (12.14)

If we now let the event E be a given display on a home clock located at xE, then tE and xE become the home coordinates of that 
event. If tE + dtE denotes the time coordinate of the next tick (the next event) of the home clock, with the clock still at the spatial 
coordinate xE, we relate dtE to the time increment d Et , that the traveler sees to be the time between ticks of the home clock, by 
differentiating (12.14) while holding xE ϐixed (as opposed to holding Ex  ϐixed as was done when deriving (3.4b)). The result is

1
1 2 2cosh

d t aE xE ad t cE tEc

 
 
      

 
Some identities for hyperbolic functions allow (12.14) to be rearranged into

21
1 22cosh

tE
a c xEtEc a c

 


         
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and combining the two above equations gives

1

1 2
1 (when the events are home clock displays)2

d t c c x tE E E
d t a a c c xE E

a c




  



 
 

              

.   (12.15)

This becomes a time dilation when tE is sufϐiciently close to the upper bound in (12.12) so that the right side of (12.15) is 
greater than 1, which is seen as follows. Recall that tE is a display on the home clock. When the right side of (12.15) exceeds 1, 
the time Ed t  seen by the traveler that is needed to change the display of the home clock is greater than dtE, which is the change 
of the display of the home clock and therefore also equal to the time seen by the home observer needed to change the display of 
the home clock. A larger time between displays corresponds to a slower clock, so the traveler sees the home clock to be running 
slow when the home clock display is sufϐiciently close to the allowed upper limit.

Note a lack of symmetry between (3.4b) and (12.15) for the example acceleration considered in this section. When making 
this comparison we must be careful to recognize that tE has a different meaning in the derivation of (3.4) than in the derivation 
of (12.15) and satisϐies different equations for the two cases (e.g., tE = tP for the former case but not the latter) because the event 
E has a different meaning for the two cases. In the derivation of (3.4), the event E is a given display on the traveler’s clock. In the 
derivation of (12.15), the event E is a given display on a home clock located at xE. Hence, we must use caution when comparing 
(3.4b) to (12.15) by recognizing that terms represented by the same symbols do not have the same meanings. However, despite 
this subtle issue, there is still an obvious distinction between (3.4b) and (12.15). The expression in (3.4b) does not depend on 
the relative distance between clocks when all cases being compared have the same relative velocity between clocks. In contrast, 
the expression in (12.15), which is a time dilation pertaining to a home clock located at xE, does depend on the location xE of the 
home clock.

The upper bound for tE in (12.12), which limits the space-time points that can be assigned coordinates in the traveler’s 
system, can be removed by allowing the acceleration to persist for only a ϐinite time, with the traveler having a constant velocity 
after that time. This was explained in Section 8. It was also explained there that there exist home coordinates at which the 
transformation to traveler’s coordinates is not unique.

Much of the attention of this section was whether there exists a unique solution for tP to (12.11), without any attention 
given to calculating the spatial traveler coordinates. One reason is that existence of a unique solution for tP to (12.11) is all that 
is needed for existence of a unique set of traveler coordinates for a given set of home coordinates. Another reason is that, after 
tP has been solved, the traveler coordinates are easily calculated from it via (6.7) and (6.8) without any need for explanation. 
However, for completeness, a calculation of traveler coordinates should be included, and that is the goal of this paragraph. 
Given that the home coordinates satisfy (12.12), so there exists a unique solution for tP to (12.11), it is simple in concept to 
solve (12.11) for tP and then use this with (6.7) and (6.8) to calculate traveler coordinates. Although simple in concept, the 
expressions are a little messy. Expressions that are less messy are obtained from the transformation in the other direction. Given 
the conditions in (12.12), the traveler coordinates can be obtained by inverting the transformation from traveler coordinates 
to home coordinates, and this transformation is less messy to write. For the case considered in which the velocity is in the 
x-direction, (3.3) becomes

   
2

P E
E P P

V t x
t t t

c
          12.16a)

    , ,E P P E E E E Ex X t t x y y z z    .    (12.16b)

Also, combining (12.10c) with (12.13) gives

( ) coshP E
at t
c

    
 

         (12.17a)

while combining (12.13) with (12.10a) and (12.10b) gives
2

( ) cosh 1P E
c aX t t
a c
       

        (12.17b)
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( ) tanhP E
aV t c t
c

   
 

.        (12.17c)

Finally, we substitute (12.13) and (12.17) into (12.16) to get

sinhE
E E

c x at t
a c c

       
   

        (12.18a)

2 2
cosh , ,E E E E E E E

c a cx x t y y z z
a c a

              

.    (12.18b)

13. Metric tensor for the constant acceleration felt by traveler
The next section has a need for the zero-zero component of the metric tensor in the traveler’s system and the goal of this 

section is to calculate the metric tensor for the acceleration example considered. This quantity depends on the space-time point 
of evaluation and is most conveniently expressed in the traveler’s coordinates of a given point. While Sections 2 through 7 and 
12 applied E subscripts to coordinates to emphasize that they are coordinates of arbitrary events, we shorten the notation here 
by omitting those subscripts, so it is understood here that ( , )t x are the traveler’s coordinates of an arbitrary event. When 
expressed as a function of these coordinates, the i, j component of the metric tensor is denoted , ( , )i jg t x . Section 10 showed 
explicit dependences that various quantities, used to construct the metric tensor, have on x , but the dependences on t  was 
implicit, through a dependence on Pt  which in turn is a function of .t  To explicitly show the dependences on t , note that when 
the travelers time coordinate t  is the given quantity, as opposed to home coordinates, Pt is calculated from (12.13) (with the 
subscript E omitted in the notation used here), i.e., calculated from

sinh
c a

t tP a c


 
 
 

.          (13.1)

Quantities previously expressed in terms of Ex can now be expressed explicitly in terms of Ex  via the substitution given by 
(13.1).

Quantities that must be evaluated to calculate the metric tensor include γ(tP) and V(tP), which, for the acceleration example 
considered here, were shown in Section 12 to be given by

2
( ) 1

a
t tP P

c
  

 
 
 

         (13.2a)

( )
2

1

atPV tP
a

tPc




 
 
 

.         (13.2b)

Another quantity that must be evaluated is the three-dimensional acceleration, which is the derivative of V with respect to 
coordinate time in the home system, and can be calculated from

( )
( )

dV tPA tP d tP
 .

Using (13.2b) to calculate the derivative in the above gives

( ) 3
2

1

a
A tP

a
tPc




       

.         (13.2c)

We now express the quantities in (13.2) in terms of t  by using (13.1) together with some identities for hyperbolic functions 
to get

( ) cosh
a

t tP c
 

 
 
 

          (13.3a)
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( ) tanh
a

V t c tP c


 
 
 

         (13.3b)

( )
3cosh

a
A tP a

t
c


 
 
 

.         (13.3c)

For the acceleration example considered here, all motion is along the x-axis so the T-functions deϐined by (10.8) reduce to

   1 3, ( )1 2T t t A t xP P P
c

x

together with  2 , 0PT t x  and  ,Pt  0T x  . Using (13.3) to express  1 ,PT t x  in terms of t gives

 1 2,P
aT t x
c

x .         (13.3d)

We see from inspection of (10.14) that when  2 , 0PT t x  and  ,Pt  0T x , each component of the metric tensor in the 
traveler’s system equals the corresponding component of the Lorentz metric tensor except the zero-zero component, i.e.,

, , if ( , ) (0,0)i j i jg g i j  .       (13.4a)

where ,i jg  is the Lorentz metric. Also, when  2 , 0PT t x  and  ,Pt  0T x , the zero-zero component given by (10.14a) 
reduces to

         
2

2 22
0,0 1 121 1 , 1 ,P

P P P

V t
g t T t T t

c


 
     

 
x x .

Substituting (13.3) into the above gives
2

0,0 21 ag x
c

   
 

.         (13.4b)

14. Another kind of time dilation and doppler eff ect
Two kinds of time dilation were previously discussed. Section 3 discussed the case in which a given display on the traveler’s 

clock was the event, and the calculated quantity was the home observer’s time coordinate of this event (this is equivalent to 
saying that the calculated quantity is the display on the home clock that is simultaneous with a given display on the traveler’s 
clock when the home observer deϐines simultaneity). Section 12 discussed the case in which a given display on the home clock 
was the event, and the calculated quantity was the traveler’s time coordinate of this event (this is equivalent to saying that the 
calculated quantity is the display on the traveler’s clock that is simultaneous with a given display on the home clock when the 
traveler deϐines simultaneity). We now consider a third case in which two clocks are not moving relative to each other, they 
are both stationary in the traveler’s system 14, but one clock is spatially displaced relative to the other. One clock, still called the 
traveler’s clock, is at the traveler’s origin so the traveler’s worldline is the worldline of that clock. The traveler is at the origin 
of the reference frame and uses this clock to deϐine time coordinates of events. Displays on a second clock, called the displaced 
clock, are treated as events, and the quantity to be calculated is the traveler’s time coordinate of such an event. This is equivalent 
to calculating the display on the traveler’s clock that is simultaneous with a given display on the displaced clock when the 
traveler located at the traveler’s clock deϐines simultaneity.

A coordinate transformation between the traveler and a displaced traveler has not been included in this report, but the 
above calculation can be performed without deriving that transformation by utilizing the metric tensor. Details are as follows. 
Recall from (11.21) that the time coordinate measured by a traveling clock of any given point on the worldline of that same clock 
is equal to the proper time assigned to that point on the worldline. Therefore, an increment of time display, denoted d t , on 
the displaced clock is equal to the increment of proper time, denoted dτ, between nearby points on the worldline of that same 
displaced clock, i.e.,

14 Stationary from the traveler’s point of view, meaning that the traveler’s spatial coordinates of the clocks are constant in time. Due to a changing length 
contraction with a changing traveler velocity relative to the home system, the home observer might not agree that the clocks are stationary in the traveler’s 
reference frame.
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d t d .           (14.1)

A second relevant fact is that the increment of proper time is a scaler invariant that can be calculated using the metric tensor 
of any convenient reference frame. Because the displaced clock is stationary in the traveler’s reference frame, it is convenient 
to use the traveler’s metric tensor for this calculation. Using the acceleration example of Sections 12 and 13, let Cx  denote 
the location of the displaced clock, along the x-axis, in the traveler’s coordinate system. A given point on the worldline of the 
displaced clock has traveler’s coordinates ( , )Ct x  and a nearby point on the same worldline has coordinates ( , )Ct d t x . There is 
no displacement of the spatial coordinate so the relationship between d and coordinate displacements reduces to

   2 2
0,0 ( , )Cd g t x d t  .         (14.2)

Combining this with (14.1) while using (13.4b) gives

21 C
ad t x d t
c

   
 

.          (14.3)

If the displaced clock is displaced in the direction of the traveler’s acceleration, so Cx  is positive, we have d t d t , so the 
displaced clock appears to the traveler to be running fast. Displaced in the opposite direction, but not far enough to make the 
parenthesis in (14.3) negative, makes the displaced clock appear to the traveler to be running slow.

A Doppler effect is derived by considering a situation in which the displaced clock is accompanied by a light source that is 
stationary in the traveler’s system and is at the same location as the displaced clock. There is no motion between the light source 
and traveler as seen by the accelerating traveler, but the light source and traveler are at different locations 15.� The goal is to 
derive a Doppler effect as seen by the traveler for this case. This effect is caused by acceleration, which is equivalent to gravity, 
so we will call this a gravitational Doppler effect. It is interesting to compare this to the effect, which we will call the Lorentz 
Doppler effect, seen by an inertial system when a light source moves relative to the system. The Lorentz Doppler effect is easily 
found in the literature, so details need not be included here, and we will merely focus on some points of comparison. The Lorentz 
effect is a combination of two effects. The ϐirst is from consecutive wave peaks produced by a moving source being emitted at 
different locations relative to the observer, which results in different times of travel to the observer. These different travel times 
contribute to the different arrival times of the wave peaks at the observer location (a second contribution to the different arrival 
times is the wave period of the source which is the difference in wave peak emission times). This ϐirst contribution, taken by 
itself, would produce the Doppler effect derived from a nonrelativistic treatment of sound waves in which the observer is at rest 
in the medium and the light source moves relative to the medium. The second effect that contributes to the Lorentz Doppler 
effect is a time dilation, which modiϐies the result derived for sound waves. In contrast, the gravitational Doppler effect is much 
easier to derive because, as seen below, only time dilation is relevant.

Using the acceleration example of Sections 12 and 13, let Cx  denote the location of the light source, along the x-axis, in the 
traveler’s coordinate system. Consider two consecutive wave peaks emitted by the light source. They are both emitted at the 
same location in the traveler’s system so they both have the same time of travel, as seen by the traveler, between emission and 
reaching the traveler. Therefore, according to the traveler, the difference in arrival times between the consecutive peaks, which 
is the wave period denoted T seen by the traveler, is the time difference, seen by the traveler, between emissions of consecutive 
wave peaks. Recall that d t  in (14.3) is an increment of time display of the displaced clock, while d t  is the amount of time seen 
by the traveler to produce that change in clock display. Let the change in displaced clock display d t  equal one clock tick, which 
is also the time between consecutive wave peak emissions produced by the accompanying light source, so d t T  where T is 
the wave period in the reference frame of the light source. Because travel time of the light wave is irrelevant, the wave period T
seen by the traveler is the difference d t  in traveler time coordinates between consecutive wave peak emissions, so d t T . 
Substituting this together with d t T  into (14.3) gives

21 C
aT x T
c

   
 

.         (14.4)

The frequency f in the reference frame of the light source and frequency ,
,

i
j

i j
i j i

d dg
d d 


  V U VV U V UUU V at the location of the traveler are related by the 
inverse relation

15 Although incidental, because the home observer is not relevant in this discussion, it is interesting that, due to length contractions having a velocity 
dependence, a constant separation between traveler and light source as seen by the traveler (a given condition) does not imply a constant separation as 
seen by the home observer when velocities change. This was also mentioned in the previous footnote.
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21 C
af x f
c

   
 

         (14.5a)

or

21 C
f a x
f c

   
 

 (14.5a)

which is the ϐinal result for this Doppler shift.

Summary
An inertial system is said to be “local” with the traveler’s system at a given space-time point P on the worldline of the traveler’s 

spatial origin, and is called the P-system, if the point P is simultaneous with alignment of the spatial origins of the two systems, 
which is simultaneous with one system being at rest with respect to the other, and the clock in the P-system is set to give the 
point P the same time coordinate as given by the traveler. The physical postulate is that events that are simultaneous with P as 
seen by the P-system are events that have the same space-time coordinates in the traveler’s system as in the P-system. Home 
system coordinates of events simultaneous with P according to the P-system can be identiϐied via a Lorentz transformation 
between the P-system and the home system. These are also the home system coordinates of events for which the traveler’s 
coordinates are the same as the P-system’s coordinates, so the traveler’s coordinates are related to the home coordinates via the 
same Lorentz transformation that relates the P-system coordinates to the home coordinates. The transformation from traveler 
coordinates to home coordinates is derived from these considerations and the results are (3.1) through (3.3).

A subtle issue is that there can be events for which there does not exist, or there does exist but it is not unique, a space-time 
point P on the traveler’s world line that is simultaneous in the P-system with the given event. The result is that the transformation 
(3.1) through (3.3) is not globally invertible. If the traveler’s system ever has any acceleration at all, we can ϐind home coordinates 
of an event for which (3.1) through (3.3) cannot be inverted to obtain a unique set of traveler coordinates for the event because 
multiple sets of traveler coordinates each satisfy (3.1) through (3.3). For a given event that does have a unique set of space-time 
coordinates in the traveler’s system, those coordinates are found by solving (6.6) for tp, and then completing the calculations via 
(6.7) and (6.8). The ϐirst step, solving (6.6) for tp, answers the question of existence or uniqueness for the selected event. There 
exists a unique solution for tp if and only if there exists a unique set of traveler coordinates for the selected event.

For any event that has a unique set of space-time coordinates in the traveler’s system, the metric tensor in the traveler’s 
system is expressed in terms of those coordinates via (10.14), with tp expressed in terms of the traveler’s time coordinate by 
inverting (10.15). For the special case in which the acceleration felt by the traveler is constant in time (producing a motion that 
the literature calls hyperbolic motion), the equations simplify to (13.4).

Three different versions of time dilation were discussed. The simplest is the case in which the home observer is observing 
the traveler’s clock, meaning that the home observer deϐines simultaneity. To be more speciϐic, the home observer deϐines 
the traveler’s clock readings that are simultaneous with given readings on the home clock. This case is treated by regarding 
readings on the traveler’s clock as events, while simultaneous (according to the home observer) readings on the home clock are 
time coordinates (in the home system) of the events. The result is given by (3.4b) and is as simple with acceleration as for the 
case of constant velocity.

A second and more complex version of time dilation applies when the traveler is observing the home clock, meaning that 
the traveler deϐines simultaneity. This case is treated by regarding readings on the home clock as events, while simultaneous 
(according to the traveler) readings on the traveler’s clock are time coordinates (in the traveler’s system) of the events. The 
result is given by (12.15) for the case in which the acceleration felt by the traveler is constant in time.

A third version of time dilation applies when the same observer, the traveler, is observing two clocks at different locations 
but with each stationary according to the traveler. Due to an equivalence between acceleration and gravity, this can be called a 
gravitational time dilation that compares two clocks at different locations in a gravitational ϐield. For the special case in which 
the acceleration felt by the observer is constant in time, this time dilation is given by (14.3). This time dilation immediately 
implies a Doppler effect given by (14.5) for this example acceleration.
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