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Abstract

We explain qualitatively in this short paper the essence of the renormalization group, 
showing that these ideas apply not only in physics but also beyond, forming the foundation 
of artifi cial intelligence.

Research Article

Renormalization Group in 
Physics and Beyond
Antal Jakovac1,2*
1Department of Computational Sciences, Institute for Particle and Nuclear Physics, 
HUN-REN Wigner Research Centre for Physics, 29-33 Konkoly-Thege Miklo´s Street, H-1121 
Budapest, Hungary
2Department of Statistics, Institute of Data Analytics and Information Systems, Corvinus 
University of Budapest, 8 F˝ova´m Square, H-1093 Budapest, Hungary

More Information 

*Address for correspondence: 
Antal Jakovac, Department of Computational 
Sciences, Institute for Particle and Nuclear Physics, 
HUN-REN Wigner Research Centre for Physics, 29-
33 Konkoly-Thege Miklo´s Street, H-1121 Budapest, 
Hungary, Email: jakovac.antal@wigner.hun-ren.hu

Submitted: August 12, 2025
Approved: August 21, 2025
Published: August 22, 2025

How to cite this article: Jakovac A. Renormalization 
Group in Physics and Beyond. Int J Phys Res Appl. 
2025; 8(8): 259-262. Available from: 
https://dx.doi.org/10.29328/journal.ijpra.1001132

Copyright license: © 2025 Jakovac A. This is an 
open access article distributed under the Creative 
Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in 
any medium, provided the original work is properly 
cited.

Keywords: Functional renormalization group; 
Relevant-irrelevant coordinates; Modeling in 
physics; Artificial intelligence

OPEN ACCESS

1. Introduction
The world is full of facts: even in simpliϐied systems that 

can be represented in computers, the conϐigurations are 
usually represented by a lot of numbers. A hydrodynamic 
state, a conϐiguration in a Monte Carlo simulation contains a 
lot of information.

On the other hand, observations are less numerous. 
In reality, we are only capable of making observations 
discretely, with ϐinite temporal and spatial resolution, or, if 
the observation depends on parameters, with a discrete set 
of parameters. In computers we do not consider all possible 
measurable quantities ”observation”. Usually we consider 
the microscopic structure as unobservable, irrelevant details, 
and the long time and long distance ”infrared” quantities 
matter. In thermodynamics we speak about ”microstates” and 
”macrostates” exactly to represent this phenomenon [1,2].

To model this situation we may tell that the possible states 
of the world are W ⊂ X where X ∼ RN, while the observations 
form a functional space O ⊂ {W → Y } where Y ∼ RM. We can 
also say that we coordinatize the world with N real micro 
degrees of freedom, and observe it through M macro degrees 
of freedom. According to the above argumentation N ≫ M, the 
number of microscopic degrees of freedom is much larger 
than the number of macroscopic degrees of freedom [3,4].

But this also means that there are coordinate 
transformations that do not inϐluence any of the observables. 
Let us denote

 1 ,yW o y                        (1)

the inverse image of y ∈ Y . This leads to a foliation of W, a 
coordinate system that is (locally) R × I, where the coordinates 
in R do change some of the observables, while the ones in I 
do not [5]. We will refer to the coordinates in R as relevant 
degrees of freedom, and those in I as irrelevant, in accordance 
with the renormalization group (RG) nomenclature [6-9].

To describe in words what these symbols mean let us 
take the following example. We have two real facts, i.e. two 
real numbers, say (x1,x2). The world W is then is identiϐiable 
with R2. We choose the set of observations O = {o} with a 

2 2
1 20( , )x y x x  single element. Here there is a transformation 

of this observable, namely a rotation that leaves this observable 
intact. Then we have a subspace in R2

   1   {( cos , sin ) | 0,2 }rW o r r r                       (2)

belonging to the same value of the observable: this is a 
circle in this particular case. Therefore instead of the original 
coordinates it is worth to change the relevant-irrelevant (R-I) 
basis:

2 2 2
1 2

1

,  arctan( ).xr x x
x

                        (3)
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Here the irrelevant coordinate does not inϐluence the value 
of the observable, while the relevant coordinate does.

Actually, the problem of all modeling tasks is to ϐind this 
coordinate system. Indeed, if we originally have observations 
depending on two coordinates, say x and y, i.e. o(x, y), but it 
turns out that all components of o are insensitive to the value 
of x − y, then it is worth – in the spirit of Occam’s razor – to 
introduce new coordinates u = x+y and v = x−y, and state that 
o(u) is, in fact, a single-variable function.

Thus, we obtain a minimal set of relevant quantities, 
independent in the sense that every nontrivial variation of them 
modiϐies at least one observable. This minimal number is not 
necessarily equal to the number of observables we consider, 
just in opposite, usually the number of relevant coordinates is 
much smaller. According to the above argumentation, all the 
observables are functions of the relevant coordinates

 1,... | .ro o xr R                      (4)

We can also associate an entropy to the learning process, 
which is largest when the number of relevant coordinates is 
the smallest [10].

Note that only the number of the relevant quantities 
are ϐixed, and we can use any other form that contains the 
xr coordinates in a bijective way. In particular we can use a 
designated set of observables to express the other

 1,...    | | .( )
i R j Rr r R o f oo o x


 

   
                   (5)

2. Modeling in physics
In physics modeling consists of two parts. First we use 

a basis {ϕa} that can produce all observables of the given 
environment – these correspond to the microstates. In 
mechanics these are the point mass coordinates and velocities, 
in a ϐield theory these are the elementary ϐields: electric ϐields, 
wave functions or quantum ϐields, respectively, depending on 
the actual system.

In statistical systems we build up the ensemble by 
weighting the basis element according to some probability 
distribution (or, in quantum systems, with complex weights). 
Deterministic systems can also be described in this way, but 
the distributions are sharp (Dirac deltas). So the model is 
equivalent to giving the statistical weight factors associated 
to the basis elements P(ϕ). Usually, we do not speak about the 
statistical weights themselves, but about its logarithm, which 
is the Hamiltonian [11,12].

1( ) ln ( ),H P 


                       (6)

where β is a formal temperature, determining how precisely 
should the system remain in a given energy shell.

If we single out a set of observables {oα} in this system, 
then, as it was argued above, there are equivalent states that 
do not inϐluence the result. Therefore, there are numerous 
equivalence relations between the microstates

     ,   .iX o o                           (7)

This means that there is an equivalence relation between 
Hamiltonians

iH H X H                       (8)

for all Xi transformations.

As was argued above, there are only |R| coordinates that 
relevant from the point of view of deϐining the Hamiltonian. So 
we can choose |R| variables hr(ϕ) (actually, they do not need 
to be observables themselves), and treat the Hamiltonian as 
the sum of these variables

X
r rH c h                                   (9)

r∈R

where the cr coefϐicients are also called coupling constants.

In physics it is usual that the number of relevant terms, 
|R| is small, if the observables are the long range (infrared, 
IR) correlation functions. In Ising model it is just three 
(temperature, magnetic ϐield and the coupling constant), 
but even in the Standard Model it is just 21, which is a much 
smaller number than the number of observables. Actually, 
we are tempted to say that a ”good” theory consists of a few 
relevant quantities.

3. Modeling and AI
The same reasoning applies outside of physics as well. In 

all systems that are deϐined by “microscopic” variables that 
are not important from a certain point of view we can deϐine 
the R-I system.

What is considered “important” is, of course, not given a 
priori. It is deϐined by the environment and, in practice, usually 
determined by specifying samples that should be regarded 
as equivalent. For example, if we want to tell apart dog and 
cat images, all dog images are considered equivalent, and all 
cat images are considered equivalent. If we want to separate 
different dog breeds, then dog images must not be equivalent, 
but all images showing for example, German shepherds, are 
equivalent.

For any of the tasks we may deϐine the R-I foliation and 
ϐind the corresponding coordinate system. Moving along the 
relevant coordinates we change the observables, moving along 
the irrelevants, we remain in the same equivalence class.

In fact, all the AI methods aim to ϐind this foliation [13-
16], usually not a complete coordination, but ϐinding the 
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most relevant directions. In Support Vector Machine (SVM) 
algorithms we seek that direction, where the projection on 
this direction separates the equivalence classes the most. The 
Principal Component Analysis tries to ϐind those coordinates 
along which a dataset varies the most. If we think the dataset as 
examples of equivalent samples, then the highest eigenvalues 
in PCA are associated with directions of maximum variance; 
clariϐication is needed regarding whether these are considered 
relevant or irrelevant, while the lowest ones are the relevant 
coordinates.

Since this can be somewhat counterintuitive, let us have 
a closer look what PCA coordinates mean. PCA assumes that 
the data lie on a linear subspace (eventually having a ϐinite 
width), and tries to ϐind those directions that are aligned 
with this subspace. If we consider the data equivalent, then 
that directions that do not lead out from this subspace do 
not change the equivalence class. According to the above 
nomenclature these are called irrelevant coordinates. The 
directions that are perpendicular to this subspace change the 
equivalence class, and so they are relevant.

Another view is that the relevant directions v are the ones 
that give v · x = 0 for all x ∈ data. Therefore, a relevant direction 
has zero eigenvalue. Otherwise, these are the laws, the rules 
that are obeyed by all data elements.

To give a concrete example about the meaning of relevant 
and irrelevant directions, consider human faces: faces of the 
same person are treated as equivalent. In this case, it is useful 
to adopt a coordinate system where the relevant directions 
take to another person, the Irrelevants, just change the facial 
expression of the same person (like the “smile vector” in VAE).

The deep neural network models designed for 
classiϐication determine those coordinates, using a nonlinear 
transformation of the original degrees of freedom, where the 
classes are different the most. We can also think that different 
layers represent different relevant coordinates, which loosely 
correspond to a physical scale, in particular if pooling layers 
are put in between.

In autoencoders, we try to build in the hardware the 
relevant coordinates, and in the internal layer we reveal those 
coordinates that characterize the internal part of the data 
belonging to the given equivalence class.

We may note here that the number of relevant coordinates 
has no reason to be small, contrary to our assumption in 
physics systems. The idea of Boltzmann machine, that assumes 
it, fails in most cases. For example, in face recognition we 
need thousands of base points to identify the different facial 
expressions and tell apart different people. Actually, this is the 
biggest difference between the areas where physics (in general 
science) can be used, and where we should use intelligent 
systems: in science the number of relevant quantities is small, 
in intelligence-approachable systems it is large.

4. Renormalization
The data model, which, according to the above discussion, 

is equivalent to the determination of the R-I coordinate 
system, depends on the designation of the observables. We 
cannot expect to use the same relevant quantities for different 
observables. Sometimes yes, but usually not.

In physical renormalization group studies, we usually 
change only the scale where the observables are deϐined. If we 
use inϐinitely large lattice, and change the lattice spacing, we 
consider formally the same observables (n-point functions), 
but the meaning of the observables changes. Therefore, we 
can expect that for changing the lattice spacing a bit, we see a 
small change in the Hamiltonian. In this case we can speak of a 
“running coupling”, whose value depends on the actual scale k

 .r rh h k                   (10)

It can happen, however, that coefϐicients that were small 
for a given scale may increase in value. This process can lead 
to a violent change in the Hamiltonian (c.f. IR Landau poles 
[17]). After this change we cannot use the same Hamiltonian 
anymore, and we arrive at a completely different system using 
completely different relevant quantities. This crossover can 
be observed in the QCD → nuclear physics change.

In AI systems small changes are rare. Even if we have 
a system that is capable to separate N classes, the inclusion 
of the (N+1)th class brings in a huge change in the R-I 
coordination. This is the problem of catastrophic forgetting 
[18,19], meaning that we must re-train the network after the 
changing of the observation objectives.

Using the ϐlexibility in deϐining the relevant quantities, we 
can ϐind that R-I coordination that works for a lot of situations, 
allowing that in some cases certain coordinates are relevant, in 
other cases the same are irrelevant. Actually language works 
in this way, where the relevant coordinates are the different 
words. A word is not necessarily relevant in a given situation, 
for example a stone does not have taste, but all (important) 
observations in the world can be expressed with the help of 
the words. This process that includes several environments 
and works out their common R-I system, goes beyond the 
usual renormalization approach, and it leads to generalization 
and extension [4].

Conclusion
We have argued in this short paper that the most important 

task of all modelling, whether it is a scientiϐic physics model 
or an artiϐicial intelligence model, is to ϐind the R-I (relevant-
irrelevant) foliation for a given set of observables oα, minimizing 
the number of relevant coordinates. All observables remain 
unchanged when we change any of the irrelevant coordinates, 
and there is no such a combination of the relevant coordinates 
that is irrelevant.
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This coordinate system can be manifested in different 
ways. In physics, or in general in statistical systems we try to 
ϐind the logarithm of the statistical weight, called Hamiltonian. 
The presence of irrelevant directions means that there is an 
equivalence relation between the Hamiltonians, leading to 
the same expected values of the observables. This makes it 
possible to represent the Hamiltonian as a weighted sum of 
certain terms.

In AI the R-I system usually shows up as the architecture of 
the applied network. In PCA the eigenvectors corresponding to 
the large eigenvalues are irrelevant in the above nomenclature, 
while the small eigenvalues remain the same in a given data set, 
so they play the role of relevant coordinates. In Deep Neural 
Networks the architecture provides the relevant coordinates, 
and in the last layer we build up those observables that can 
tell apart the different classes the most effectively.

Since the coordinate system depends on the singled-
out observables, the data that require modelling, it changes 
whenever we change the task. In physics we consider 
the change in the scale, and follow the evolution of the 
Hamiltonian under this process. But this is only a small part of 
the possible changes, in fact all AI tasks represent a different 
observable set. In all cases, we expect that small change led 
to a small change in the R-I basis, in particular a small change 
in the Hamiltonian. Then we can speak about renormalization 
of the different terms, since the same terms remain, only 
their coefϐicients change. But even in physics it can happen 
that coordinates that are irrelevant in a given scale, become 
relevant in other cases. In AI problems it is a very common 
observation, leading to the catastrophic forgetting problem, 
and it requires an extra effort to use generalized relevant 
coordinates that can function across different situations.
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