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Abstract

According to the method of local special averaging, a porous medium is considered as 
a continuum of material points with averaged or effective physical properties. The equations 
of electrodynamics are written in the reduced form by the defi nition of the generalized 
dielectric constant. To describe the dielectric properties of a modelled three-phase porous 
medium, the possibility of using the pulse relaxation method is demonstrated. Based on the 
dielectric properties by the using of pulse relaxation function, the polarization and current 
via delay functions are defi ned depending on the volume fraction of the saturation of the 
porous medium with liquid phases. The time limits of the proposed relaxation functions 
are analysed and in the harmonic approximation of the fi eld amplitudes, a transparent 
expression for the generalized dielectric displacement vector is written in terms of physical 
content. Within the framework of the effective macroscopic fi eld approximation according 
to the cluster approach, a method of averaging local equations of the electromagnetic fi eld 
is demonstrated. The generalized complex dynamic dielectric constant for the composite 
porous body is determined. The compatibility conditions of the demonstrated method for 
describing of electromagnetic processes in a heterogeneous multiphase porous medium 
are recorded.
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Introduction
We are considering the porous three-phase medium, as composite material, which is characterized by the low conductivity. 

This is a composite body of low electro-conductivity (C.B.L.C.) (not ideal dielectric [1]). The low electrical conductivity of such 
body in general is conditioned with conductive properties of water (liquid phase). In general the energy dissipation of the 
external microwave electromagnetic ϐield (E.M.F.) can be caused by the charged particles during own oscillation or orientations 
movements: 2 2' / ''P E f tg E       , this is the dielectric losses (polarization heat release), here Pv is the power of heat releasing 
into body on the unity of the volume, k is the dimension constant, E and f are the stretch a frequency of electric ϐield, '  and ''
are the real and imaginary parts of the dielectric constant, tgδ is the tangent of dielectric loss, so and dissipation of energy by the 
charge carries (free electrons or ions): Pv = E2qnμ, this is Joule's heat releases (ionic conductivity ), here E - is the electric ϐield 
stretch, q is the electric charge of each of ions, and n and μ are concentration and mobility of ions correspondingly. 

In the future corresponding to the effective macroscopic ϐield under harmonically approach of E.M.F. we will be modelling 
the polarization heat releases which are causes by the dielectric losses from the side of hard matrix (carcass or skeleton) and 
free (not joined or not adsorbed) water. We will review the humidiϐied air as not conductive media. The joules heat releases 
because of ions and electrons conductivity of liquid phase (water) we are neglectedor bypassed.

The local space averaging

The three-phase macroscopic porous area, volume or cell P of the humidiϐied porous body, as it was mentioned into work [2], 
consist from the solid PS, liquid PL and gas PG , so arbitrary volume of averaging  VR contains the phases sub volumes for skeleton 
∆VS(t) (solid phase), water ∆VL(t) (liquid phase) and gas ∆VG(t) (this is mixture of dry air a and water vapor v components), which 
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may to changes with time t. Through the sub volumes ∆VL(t) and ∆VG(t) we can deϐines the volume of pores ∆VP(t)=∆VL(t)∪∆VG(t) 
under condition ( )RV V t



   , where σ = {S,L,G} is the index of phase. 

The conϐiguration and displacement of phases into the averaging volume of the body can be rewritten with usage of this 
characteristics function

     
 1, ( )( , ) ,  , ,

0, ( )
when V tr t here S L G
when r V t







    




   
(1)

This function also takes into account the time moving of phases for considering body, which can be conditioned by the mass 
transfer processes or the mechanical deformations. So, ( ) ( , )

VR

V t J r t dV 



  
 , and volume of σ - phase of the material can be 

determined as
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(2)

here x  and t are denotes the coordinate and time into the mezoscopic scale [2] accordingly.

Also we can review the physical quantities of the pore saturations by the liquid ηl or the gas ηg correspondingly

     
, , ( 1)GL

L g L G
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V V V V

   
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      (3)

Then, according to the known volumetric deϐinition [3] of the local porosity 
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    
 

 
,        (4)

the volume fractions of phases are satisfy the following relations

       θs = 1 - ϕ, θL = ϕηL, θG = ϕ (1-ηL)              (5)

Let's deϐine through the function ( , )r t
  into ranges of R.E.V. (the Representative Averaging Volume [4]) a certain the local 

value of any physical quantity, which characterize the macroscopic physical volume P of the considering porous body. The space 
averaging of such quantity in the point x  of the macroscopic porous volume into the time moment t determines [3] in the such 
way

        

1( , ) ( , )
R VR

x t r t dV
V

 
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
 

 
.          (6)

Similarly, by the usage of the characteristic function (1), we may reproduce [2] the phase 
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and internal 
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as an averaged quantities. 

Because the relation is satisfy

          

( , ) ( , ) ( , ) ( , )
V VR

r t J r t dV r t J r t dV 



 
 

 
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,     

the phase and internal averaged are interconnected 

           ( , ) ( , ) ( , )x t x t x t
    
   .       

So, using the method of the local spatial averaging, a reviewed heterogeneous porous cell P can be described under certain 
continuous by the local physical quantities in coordinate and time space. This makes it possible to consider this one as the 
superposition of the three material continua: skeleton, liquid, and gas. With this approach, the equations for represented 
mathematical model of this porous cell can be written relatively to the speciϐied average values (6-8) and are formally 
equivalents to the equations for a homogeneous (isotropic) single-phase cell according to the approximation of the model [4] 
for the continuous solid medium approach.
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The equations of electrodynamics

In the microwave electromagnetic ϐield (E.M.F) frequency range according to the theory of dielectric relaxation Botcher-
Bordewijk [5] we can review the vector of the generalized dielectric displacement by the known relation 

          
     ' ' ', , ,

t

D r t D r t J r t dt


  
      ,       (9)

Where      0, , ,D r t E r t P r t 
     

 is the vector of dielectric displacement, which consider polarization processes into continuous 

media. Here  P r,t
 

 and  E r,t
 

 are the vectors of polarization and stretch of electric ϐield, and  J r,t
 

 is the density of polarization 
current. 

From the condition of continuity / 0t J    
 

 it is following the expression for the density of polarization charge 

   ' ', - ,
t

r t J r t dt


 
   

, according to this into the local averaging volume (R.E.V) [2] the microscopic equations of E.M.F. 

Maxwell-Lorents into homogeneous form [6,7] and boundary conditions have the form
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'

'
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   
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    (10a)

where

          
                               ' ' ' ',  ' '  
t t t t n nnn
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   (10b)

are the conditions of continuity for components and derivatives of the ϐield. Here     '| ' , , ¹S L G     are denotations of 
phases, t and n are indexes, which deϐine the tangential and normal components of ϐield on the surfaces ∆Sσσ, of separations of 
phases accordingly. The system of equations (10a) is satisϐied under conditions, that charges and currents of other nature into 
the investigated closed system are absent. 

The operators of dielectric susceptibility and conductivity

The constitutive or material equations is proposed to write into following case

          

       0 0ˆ, , , , , ,D r t E r t B r t H r t   
       

     (11)

Where ̂ , ̂ and ̂  are operators of dielectric permeability, susceptibility and conductivity of cell correspondingly, ε0 and 
μ0 are dielectric and magnetic constants into vacuum respectively. It is important to note, that under conditions of absence 
of joules heat releasing at the ϐixed frequency of E.M.F. and absence of dispersion, into harmonic approximation of the ϐield 
amplitudes (see Section 2, subsection 2 eqv. (28)) the operators of dielectric permeability and conductivity must have to satisfy 
the known [7] relation

             0 0ˆ ˆˆ 1i i             ,     (12)

where ω is the index, which point on the ϐixed frequency of harmonic ϐield. Then the density of polarization current 
p P   

 
 , here P


 is the polarization vector, is is determined in the usual way.

Let's deϐine the operators of dielectric susceptibility x and conductivity σ of the considering media in the form of linear 
integration operators

        
       ˆ , , ' , - ' '

t

Pf r t r t f r t t t dt  


 
  

 and        ˆ , , ' , - '
t

Jf r t r t f r t t t dt  


 
  

,  (13)

where  f r ,t


 is an arbitrary continuous function of values for the coordinates and time. If  ',r t


 and  ,r t


 are local susceptibility 
and conductivity of medium, then    - ' - - 'P Pt t t t    and    - ' - - 'J Jt t t t    are pulse-relaxation functions [5], also  - 'P t t  
and  - 'J t t  are the functions of delaying for polarization and current, which describe the reverse processes of relaxation for 
polarization  P r,t

 
 and current  J r,t

 
 accordingly.

We are considering the linear homogeneous dielectric, for each point of which the principle of superposition of electromagnetic 
ϐields is satisϐied. It is taking a possibility to modelling of time hopping (Figure 1) of electrical ϐield ( ) (-)

1- ( ) - ( ) 0i ii iE E E r E r
    

      

       ˆ ˆˆ, , ,   1 ,J r t r E r t here    
    
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into ϐixed point r  of investigated medium relatively to constant quantity iE (r)
   of electric ϐield stretch into ranges of σ - phase 

of porous material.

  

( ) (-) ( )
1( , ) ( ) ( ) ( - ') ( ) - ( ) ( - ') ( ) - ( ) 1- ( - ')i i ii i iE r t E r E r t t E r E r t t E r E r t t   
         

            
,  

where  ( ) 0, 0;1, 0t t t     is the theta-function of Heaviside [8]. Then the dielectric response of substance for σ - phase (Figure 
2) can be deϐined by the relation 

  

( ) (-)' ' '
0 1 0 1( , ) ( ( ) - ( ) ( - )) ( ( ) ( ) ( - )) ( ³ )i ii iP r t E r E r t t E r E r t t t t       

     
         ,  (14)

here ' '( - ) 1- ( - )t t t t   is the stepped function of response for polarization, xσ is the static susceptibility of σ -phase.

It should be noted, what deϐined abstractly the step response function of the polarization α for dielectric material of the 
σ-phase is displayed by the real function (Figure 3) of polarization delaying

Because  ( ) 1, 0;0, 0t t t    , where 't = t t  is the time offset symbol, when at 0t =  we get (0) 1P
  , and when t +   we 

have ( ) 0P +   , under executing [5] of a necessary condition ( ) 1P t dt   of normalization.

In the case of the Debay`s type of relaxation [5] we receive the known classical relaxation relation

     0( , ) ( ,0) ( ) ( ,0) ( )P PP r t P r t E r t 
      
     .     (15)

 

Ei+1

Ei

t ' t

Figure 1: The quantities of polarization for -phase: 0
i

iP E   , when 't t and 1
1

i
iP E 


  , when 't t .

Pσ
i+1

Pσ
i

t ' t

Figure 2: The quantities of electric fi eld stretch Ei, when 't t and Ei+1 when  't t .

α P
σ

0
t ' t

1

Figure 3: Tho function of delaying ( )P t  polarization for -phase
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The local macroscopic ϐield E(r,t)
   can be deϐined, as the superposition of amplitude-vector (coordinate) ϐields iE (r)

   through 
the time step-impulse function in the interval -i it t t t    at the arbitrary current t value of time

     
( , ) ( )[ ( - ) - ( - )]i i i

i
E r t E r t t t t t    
   ,     

Then a vector of polarization for the medium of σ-phase the material have viewed

     
0( , ) ( )( ( - ) - ( - ))i P i P i
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P r t E r t t t t t 
      
   .    

Under boundary limit ∆t → 0 with considering of material properties for σ-phase we get the expression for determining of 
polarization vector

    

'
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,    (16)

here ' '( - ) - ( - )p pt t t t     is the impulse-relaxation function for polarization of σ-phase.

Similarly by the mirroring of images Figures 1,2 relaying to averaged hope of electric ϐield stretch and current along the 
abscissa axis and shifting for modulus per unit of current relaxation values (Figure 3) under inverse mapping along the axis we 
get the expression for determining of the polarization current vector for σ-phase of material

    

'
' ' ' ' '( - )

( , ) ( , ) - ( , ) ( - )
t t

j
J

t t
J r t E r t dt E r t t t dt

t



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  
 
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     ,     (17)

here ' '( - ) - ( - )J Jt t t t     is the impulse-relaxation function for σ -phase polarization current.

According to the local averaging method (see. Section 1, eqv. (6)) it is possible to deϐine the averaged susceptibility   and 
conductivity   into the local volume of averaging in the such way

    
           , , ,   , , ,x t x t x t end x t x t x t   

 
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     (18)

here xσ and σσ is the speciϐic values of susceptibility and conductivity, and  ,x t


 is the volume fraction of σ-phase correspondingly. 
Here the times of polarization t  and heat and mass exchanges processes t are separated because of the transience of polarization 

processes ( , )1
( , )

x t
x t t





 

 

   
, where ω is the ϐixed so match frequency of E.M.F. under microwave irradiation) relatively to the 

slow temporal changes in the heat and mass transfer phenomena.

Into approach of local macroscopic ϐield [4] the space averaged kernels of relaxation for susceptibility and current into range 
of [9] can rewrite (see also Appendix) through approximate expressions
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Here,  - 't t
  and  - 't t

 , where { , }P J   is the index of conventional designation for vectors of polarization P and 
current J relatively, the impulse-relaxation functions and functions of response for polarization and current of σ- phase. 

According to (16) and (17) under applying of local averaging method [9] we receive the averaged vectors of the orientational 
polarization
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and  the current of polarization into porous media

                  , , - ' , ' ' - , , ' 1 - ' '
t t

J JJ x t x t t t E x t dt i x t E x t t t dt
 



      
 

     
        ,     (20)

Here ( )   and     is the static susceptibility and conductivity of σ-phase, which are interconnected through the known 
[6] relation

         0i      .
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From the received expressions, the vectors of dielectric displacement and current into porous media take the form

    
           0, - ' , ' '  , - ' , ' '

t t

D JD x t t t E x t dt i J x t t t E x t dt  
 

  
       

   
(21)

where

     
       - ' - ' ( ) , - 'D pt t t t x t t t

 


       


   
(22) 

and   

     
       - ' - , 1 - 'J Jt t i x t t t

 


         


     (23)

Are corresponding impulse-relaxation functions and  - 't t  is the Dirace [8] delta function.

Then the functions of delaying for dielectric displacement and polarization current (see Appendix) have the view

     
         - ' 1- - ' , - 'D pt t t t x t t t

 


       


,   (24)

     
       - ' - , - 'J Jt t i x t t t

 


      


    (25)

        
       lim 1 , , lim - ' - ,t t' x t t t i x tD J

t t' t +
    

 
        

 
,

where      , ,x t x t 


    
 

 and      , ,x t x t 


    
 

are deϐined above averaged susceptibility and conductivity 
accordingly.

During receiving of expressions (22) and (23) for impulse-relaxation functions is taken into account the join (12) between 
the polarization and current vectors as well, as also reverse relatively to polarization similarity to the relaxation properties of 
current. According to the deϐinition (9) of generalized displacement vector of σ- phase the material on the base of relations (16) 
and (17) it is follows

   

           , , , - ' , ' ' - , '' ' ' 0D x t D x t J x t dt t t E x t dt t t E x t dt dt

t t t t

D J       
          
 



  
   

          .  
 

In the way of integration by parts of second application of sum from the deϐinition of impulse-response function, it is follows

    
        - ' , ' ' 1- - ' , ' '

t t t

J Jt t E x t dt t t E x t dt  
 

  
    ,

then 

    

          '
0, - ' , ' ' 1- - ' , ' '

t t

D JD x t t t E x t dt t t E x t dt 
    

 

  
     

.   

From this according to (19) with taking into account received expressions for impulse-response functions (22) and (23) it 
follows, that space averaged vector of generalized dielectric displacement can be deϐined in the such way

    
         '

0, 1 ( , ) , , ( , ) 1- , ,P JD x t x t R x t E r t x t R x t E r t             
         ,   

here RP and RJ are the relaxation products for polarization and current accordingly, which can be described by the following 
relations

  

             1, , - ' ' , 1- - ' '
( , ) ( , )

iR x t x t t t dt x t t t dt
x t x t

t t

P P P


       
 

    
 

       
 
 

  
  , (26)

            1, , - ' '
( , )

t

J JR x t x t t t dt
x t


 


   




  
 

 ,     (27)

here ( , )x t
  and ( , )x t

  are averaged according to the relation (18) susceptibility and conductivity of porous body.

With taking into account the known relation    0i       [6] for σ-phase under condition of executing of averaged 
material or constitutive equation

0( , ) ( , )x t i x t  
 

On the mezoscopic level of the space averaging [9] we're going to more transparent for the physical sense equation
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         ( , )
, 1 , ( ) ( , ) 1- - - ,'

0
0
x t

D x t E r t i x t t t t t E r t dt

t

P J


      


  


                      




     

 

here  P t t   and  J t t   are relaxation functions for polarization (24) and current (25), which needs to determine.

The harmonic approach of fi eld amplitude

Into harmonic approach of electric and magnetic ϐields amplitudes 

       
        * *, Re , º Re , ,i t t i tr t r t e r e E H               
    

  
(28)

where    * *, º tr t r 
 

 are complex amplitudes, which light varying with the time t function due to moving of liquid phases into 
porous skeleton, according to the local view of equations E.M.F. (10a) the averaged (mezoscopic) equation are received 

        

         
   

* * * *0

* *

- , , ,

0, 0,

t t t teff

t t

E x i H x H x i x t E x

E x H x

    

   

          

         (29)

with corresponding material relations

        
         * * * *0, , ,

t t t teffD x x t E x B x H x  
        

    (30)

where      , , , /eff
t tx t x x i      

  
 and      ' '', , ,t t tx x i x      

  
 are effective dynamical generalized and local complex 

dielectric constant (C.D.C.),      ' '', , - ,t t tx x i x     
  

 is the local complex conductance. 

Also

     

       , , - 't Px x t L t t
 


         
 

,    (31)

              , , 1 - 't Jx x t L t t
 


          

 
 

are corresponding Laplace [8] images      -

0

, ,  , 0
+

stL f r s f r t e dt s i  


        
 

  from averaged (22) and (23) relaxation 
functions.

Because         ' ' '' ''
0 0, 1 ,   , ,t t t tx x i x x           

   
, so real      1 , Re ,eff x t x t      

 
 and imaginary      2 ', Im ,eff x t x t      

 
 

part of generalized dynamic (C.D.P.) and  ,eff x t


 takes the form

   
                '' '
1 2' ''

0 0
, ,

, 1 , - ,  , ,
t teff eff

t t
x x

x x x x 
   

         
 

   

 
   

  
(32)

here  ,eff x t


 is the effective-generalized complex dynamic dielectric constant (C.D.D.C.).

By the using of deϐinition (9) of the generalized dielectric displacement vector and complex amplitudes (28) of ϐield, the 
material equation (30) in the case of composite bodies with low electrical conductivity (C.B.L.C.) we can deϐine trough relation

     
' '
* * * 0 *( ) ( , ) ( ), ( ) ( ),t t t tD r r t E r B r H r  
             (33)

where    ' 1 ' 2' ( , ) ( , ) - ( , )r r i r       
    is generalized complex dynamical dielectric constant (G.C.D.D.C.),  ' 1 ( , )r 

  and  ' 2 ( , )r 
  are 

the real and imaginary parts correspondingly.

Because the joules heat exchanges was missing or neglected, so takes    ' , ,t x x   
 

 and  '' , 0t x  


. According to the 
relation (30) into taken deϐinitions, we receives

      ' ' '' ''
0 0( , ) 1 ( , ) , ( , ) ( , )t t t tr r r r           

    ,     (34)

where real  ' 1 '( , ) Re[ ( , )]r t r t  
   and imaginary  ' 2 '( , ) Im ( , )r t r t     

   part of generalized complex dynamic dielectric permittivity 
' ( , )r t
  (G.C.D.D.P.) (33) have the view

    
     ' 1 ' 2' ' '' ''

0 0
( , )( , ) º ( , ) 1 ( , ) , ( , ) º ( , ) ( , )t t t t
rr t r r r t r r 

            


   
     

  
(35)

here ' ''( , ) ( , ) - ( , )t t tr r i r     
    is the local complex dynamical constant.
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Also according (28) the dispersion relation [10] are satisϐied

      
       ' 1 ' 1 ' 2 ' 2

- -( , ) ( , ), ( , ) - ( , )r t r t r t r t       
    ,     (36)

here    ' 1 ' 2' ( , ) ( , ) - ( , )r t r t i r t    
    is the generalized complex dynamical dielectric constant (G.C.D.D.C.).

Under known material or constitutive relations for ϐield equation (33) into (C.B.L.C.) relatively to complex amplitudes of 
E.M.F. (10a) we obtain in the following form

     

'
* 0 * * *
' '
* * *

( ) - ( ), ( ) ( , ) ( )

( ) ( , ) ( ) 0, ( ) 0

t t t t

t t t

E r i H r H r i r t E r

D r r t E r H r





 



   

       

         

         ,    (37)

where    ' 1 ' 2' ( , ) ( , ) - ( , )r t r t i r t    
    is the generalized complex dynamical dielectric constant (G.C.D.D.C.), which is deϐined according 

to equation (35) under conditions of satisϐied of dispersion (36) relations.

The space averaged equations of electromagnetic fi eld

Because into multiphase porous cell electro-physical characteristics change like jumpy on the surface separation of two 
phases, so generalized complex (dynamical) dielectric permittivity (G.C.D.D.P.) ' ( , )r t

  can not be the continues function of 
coordinate. In general the last one can be deϐined by the characteristic (phase) function ϑσ (here σ = {S,L,G} is point to the index 
of phase), which is deϐined according to known relation (Section 1, eqv. (1), through this relation

     
' ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )S L G

ñ S c l c Gr t r t r t r t           
    ,    (38)

where ( ) ( ) /c i
         is the generalized complex dynamical dielectric constant (G.C.D.D.C.) for σ-phase (here σσ is the 

constant conductivity of σ-phase). Because of this the characteristics of ϐield, which is included into the equations (37) of 
electrodynamics also will be stepping like functions of coordinate. For describe of the electromagnetic ϐield in a porous cell 
P, as in the continuous medium approach by the continuous functions, we will use the methods of the theory of local spatial 
averaging [6]. For this purpose, we assume that the equations of electromagnetic ϐield and material relations relative to the 
speciϐied above the averaged (effective) quantities takes the same form as in the case of a single-phase (continuous) medium, 
i.e., they are formally equivalent. Formal equivalence of equations is ensured by fulϐilling boundary conditions (10b) at the 
interface of two media on a microscopic scale at each (current) moment of time, and the formal equivalence of material relations 
is ensured by the deϐinition of the effective electrophysical characteristics. Such effective characteristics are established within 
the averaging region Ω (R.E.V.) [2] and are determined through local properties of the environment based on certain geometric 
model considerations.

Let's review a simple example for averaging the the material relation ' '
* *( ) ( , ) ( )t tD r r t E r     

      , which is the part of 
equation of E.M.F (37) rewritten relatively to complex amplitudes (28) of ϐiled. Suppose, that into each point of averaging area 

R.E.V. the electrical ϐield is potential, i.e., ( , )E(r,t)= r t
    [11] * *( , ) Re ( , ) Re ( )t i tE r t E r t E r e       

     ), where *( , ) Re ( )t i tr t r e     
   is 

the dynamical potential and *( )t r
  is the complex amplitude of dynamical potential. Then the joining between the complex 

amplitudes of the generalized dielectric displacement and the stretch of electric component ϐield takes the form

      ' ' '
* * *( ) ( , ) ( ) - ( , ) ( )t t tD r r t E r r t r     
     .     (39) 

According to the local macroscopic ϐield approach into the area of averaging (R.E.V.) for each moment of time t the ϐield is 
homogeneous, i.e., * *0

t tE (r)= E
  , where *0

tE


 is the complex amplitude of external ϐield. Then the expression for amplitude of the 
dynamic potential in this case have the view * *0( ) -  ( )t tr E r r   

   .

We can deϐine the generalized complex dynamical dielectric constant (G.C.D.D.C.) in the Ω area (R.E.V.) ( , )eff x t
  on the base 

of the equality, which expresses the formal equivalence of material relations

     * * *' ( ) ( , ) ( ) - ( , ) ( )t eff t eff tD x x t E x x t x     
      .     (40)

According to deϐinition of space average quantity (see Section 1, eqv. (6)) and reviewing relations we have

     
 * * *0

1' '( , ) ( ) ( , ) ( )
R

t t t
R c

R V

D x r t r dV E x t
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          (41)

Here, it takes into account that the space averaged from the gradient of the dynamic potential will be
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After substitution of (41) and (42) into the deϐinition of G.C.D.D.C. (40), we get

     
( , ) ( , ) ( )eff

cr t r t 
 


    

  ,                 (43)

here ( , ) ( ) /eff
tx t i     

 , where ( )t   and   is the effective complex dynamical dielectric constant and conductivity of the 
reviewed cell and t is the index which points on the light time dependence of physical quantity.

From the expression (43) it is follows, that quantity eff
 subject to neglect of dispersion phenomena into the material 

depends on constant frequency of external microwave irradiation, dielectric permeability and volume fraction of cell phases.
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 

 



 .   

It should be noted that under the condition of weak variability of the volumetric characteristics of the porous material the 
E.G.C.D.D.C. ( , ) ( )eff effx t x    can be reviewed, as constant physical quantity in the volume of averaging Ω (R.E.V.), which takes the 
constant into the time interval values.

Taking into account the deϐinition of E.G.C.D.D.P. (39) into harmonic approach of local ϐield (28) after applying described 
above the homogenization [9] on the mezoscopic level into range of R.E.V. considering approach of not interacting clusters we 
get (see Section 2, subsection 2, eqv. (37)) the averaged equation of ϐield 

     

'
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where   *( , ) Re ( )   ,tx t x E H      
    and ( , )eff x t

  are the light (slowly) changed functions of coordinate and *( )t x
  are the 

complex amplitudes of Е.M.F. into the porous cell. Here time t have the sense of parameter with usage of which can be taken 
into account the moving of phases.

When obtaining the averaged ϐield equations (44), a relatively simple method of ϐinding the effective electro physical 
characteristics (the method of local spatial averaging) of a multiphase porous cell was used. The interesting comparative results 
of the dependence of the G.C.D.D.C. from the internal geometry or structure of the composite material for porous humidiϐied 
sample are highlighted in the author's [2] article. For a more adequate description, it is necessary to take into account the 
dependences of the E.G.C.D.D.C. not only from the dielectric properties of the phases for porous cell, but also from their local 
microstructure [12], interaction between phase inclusions [10,13] and geometric shape or orientation [14].

Propagation of electromagnetic waves

According to the system of averaged equations E.M.F. (44) the wave equation for the Т.Е.М. (Transference Electromagnetic 
Wave) in the case of the monochromatic wave by the terms of the electric ϐield strength into the composite body of low 
conductivity (C.B.L.C.) have the view

     
     

22 2
* 0 *, 0t eff t

x E x k n x t E x    
    ,     (45)

Here      0, , / ,eff eff effn x k x t k x t    
    is the complex refractive index,  ,effk x t

 is the effective wave vector into the porous 

(inhomogeneous) media, 0 0 0 0/k c      (where 0 0 01c    is the velocity of light) is the wave vector of this electromagnetic 
wave into vacuum, ω = 2πf is the angle frequency of E.M.F. (here f is the lineal frequency), μ0 and ε0 are correspondingly the 
magnate and electric constant into vacuum. The analytical solving of such equation is into details described by the author’s of 
this paper [15], where is demonstrated the possibility of applying of Wentzel-Kramers-Brillouin (W.K.B.) [16,17] method for 
founding the analytical solution of wave equation (45) into approach of slowly varying refractive properties of the T.E.M. wave.

Compatibility conditions of the electromagnetic fi eld equations

The closed-form electrodynamic equations were obtained under the conditions of weak variation of the bulk (phase) and 
dielectric (wave) properties of a three-phase porous wetted material.
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As well as condition
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which determines the possibility of using the effective macroscopic ϐield approximation in the study (determination) of the 
effective electro physical properties of a porous material according to the method of local spatial averaging.

Here ( , ) 2 / ( , )eff effk x t x t    and ( , ) 2 / ( , )eff effk x t x t    is the wave vector and phase velocity of propagation the electromagnetic 
(T.E.M.) wave in the modelling media, eff

ùn (x,t)  is the effective value of refractive index, ( , )x t  is the volume fraction f σ-phase, ω0 
in the constant angle frequency the microwave ϐield, l is the characteristic length of the volume Ω (R.E.V.) for space averaging.

Appendix

The simplest correlations between impulse-relaxation functions as well as the function of delaying for relation polarization 
and current can be received into harmonical approach of Е.М.F. (28) in the range of local averaging volume (R.E.V.) based on the 
macroscopic mean ϐield approximation.

For this we will use the known [5] relation 

         - ' - - 't t t t    ,      (1)

here α = {P,J} is the index of vector notation for polarization P and current J. From this purpose we take the reviewed above 
integrals, which consist of impulse-relaxation function, and according to replacement (48), using the method of integration by 
the parts, let's reduce them to an equivalent form:

Case А. For the vector of polarization, we have gets

    
( , ')( ') ( , ') ' (0) ( , ) ( ') '

'

t t
P P P

E x tt t E x t dt E x t t t dt
t

    
 


    

  ;

Case В. For the vector of current, we have gets
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For electric ϐield strengths at inϐinities, we assume the conditions of ϐiniteness and equivalence of the ϐield amplitude values 
(28) to the macroscopic ϐield value *( , )E x E  , where * * i tE E e   . Here *E  is the ϐinite constant amplitude value.

When taking into account the harmonic approximation for electric ϐield strengths within the R.E.V., the following relation 
holds: ( , ) ( ) i tE x t E x e   , where ( )E x  is the complex amplitude of ϐield.

In the case of [А] at the replacing of variable 't t t   for the integral into right part of equality we have gets the equivalent 
relation

    0
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After constituting the amplitude of harmonic ϐield in the previous relation, we receive the appropriate equality
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0 0
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here *( )P t  is the average constant value of response function for polarization, for which obviously it is possible to match a 

certain ϐixed real time value *t  with a known expression for the response function. When approximate equality is obtained, (2) 

is taken '
0

' 1 / ,  Im( ) 0i te dt i  


     . Similarly, for the current vector in case [B] it can be shown that
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Let us now consider the integral common to cases [A] and [B], which, by means of identical transformations, can be reduced 
to the approximate expression
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here β = {P,J} is the index of the conventional designation of polarization vectors P and current J accordingly. 

Then, according to the expressions for the polarization vectors (case [A]) and current (case [B]), we obtain the actual 
approximate relations

      * *( ) 1 ( )P Pt i t     ,      (4)
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From which it is follows the expressions for relaxation functions, if you put *( )E x E   into the relations (4) and (5) 
correspondingly.

Discussion  

The study explains the modeling of dielectric relaxation in porous, humidiϐied materials that undergo microwave treatment. 
It provides valuable insights into how electromagnetic ϐields interact with multiphase porous media. The pulse relaxation 
method provides a clear understanding of dielectric properties. This understanding is essential for improving microwave 
processing techniques. This model is beneϐicial in materials science. It explains how dielectric relaxation functions, which help 
in designing and processing porous materials such as ceramics, polymers, and composites. The model also supports microwave-
assisted drying, sintering, and curing involve uniform heating methods and strategies to prevent thermal damage. This concept 
could also beneϐit agriculture and environmental protection. Microwave radiation can measure moisture levels in porous soils 
and humid materials. It can also assess their behavior as dielectrics. This leads to better cleaning methods for soil and improved 
watering techniques for plants. Sensors that measure water and material saturation without causing harm work effectively for 
real-time ϐield measurements. This modeling method can be improved to track dielectric changes in real time during industrial 
microwave operations. This would increase its practical value. This method, along with other ways to study materials, improves 
our understanding of how microwaves interact with complex porous structures.

Conclusion
The study of the unknown distribution of the electromagnetic ϐield in composite structures is one of the fames or fundamental 

problems of mathematical physics. This is evidenced by many numbers of scientiϐic works [18,19], which describe not only 
analytical models for calculating the ϐield in relatively simple geometric structures, but also propose the numerical methods of 
modelling the distribution of electromagnetic ϐield into inhomogeneous bodies. It is indeed difϐicult to predict the distribution 
of the electromagnetic ϐield in porous wetted bodies. This is primarily due to the predominant or primary inϐluence of the liquid 
phase. The distribution of liquid in the pores of the solid skeleton indicates a signiϐicant inϐluence of surface wetting effects 
or adsorption in the near-surface layers of the solid skeleton. The electro-physical dielectric properties of bound or adsorbed 
water in near-surface layers differ signiϐicantly from the dielectric properties of free water known in the microwave irradiation 
range.The author of this article has attempted to propose a comprehensive theoretical approach to describing the phenomena 
of dielectric relaxation in porous wetted materials. This article considers the possibility of describing dielectric relaxation 
phenomena in layered composite bodies. It is not difϐicult to generalize the considered method for bodies of arbitrary geometric 
shape. The adequacy of the above mathematical relationships can only be conϐirmed by experimental research methods.
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