Diffusion Welding of Similar and Dissimilar Alloys: Review Article
Main Article Content
Abstract
Diffusion welding has emerged as a promising solid-state joining technique, particularly in applications where high heat input from fusion welding can introduce defects and negatively affect the properties of base materials. This process operates at lower temperatures than fusion welding, thereby preserving the mechanical properties of the joined materials. The success of diffusion welding relies on critical parameters such as temperature, pressure, time, and surface preparation. While it is an established method for joining similar alloys, its application to dissimilar alloys presents unique challenges, including differences in thermal expansion coefficients, melting points, and the potential formation of brittle intermetallic compounds. This review article aims to consolidate existing research on diffusion welding of similar and dissimilar alloys, providing a comprehensive understanding of the process and its parameters. Through critical analysis and evaluation of previous studies, the article proposes new inferences based on combined findings. It draws conclusions that will guide future experiments and applications, particularly in industries where precision and material integrity are paramount requirements, such as aerospace, automotive, and power generation. The application of diffusion welding as a reliable alternative to fusion welding highlights its potential to overcome the limitations of the high-heat-input process and enable successful joining of diverse/dissimilar material combinations.
Article Details
Copyright (c) 2026 Sehsah AM, et al.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Wu D, Zhang P, Yu Z, Gao Y, Zhang H, Chen H, Chen S, Tian Y. Progress and perspectives of in-situ optical monitoring in laser beam welding: Sensing, characterization and modeling. J Manuf Process. 2022;75:767–791. Available from: https://research.lancaster-university.uk/en/publications/progress-and-perspectives-of-in-situ-optical-monitoring-in-laser-/
Vaishnavan SS, Jayakumar K. Tungsten inert gas welding of two aluminum alloys using filler rods containing scandium: The role of process parameters. Mater Manuf Process. 2021;37:143–150. Available from: https://doi.org/10.1080/10426914.2021.1948055
Singh DK, Sharma V, Basu R, Eskandari M. Understanding the effect of weld parameters on the microstructures and mechanical properties in dissimilar steel welds. Procedia Manuf. 2019;35:986–991. Available from: https://doi.org/10.1016/j.promfg.2019.06.046
Harada Y, Sada Y, Kumai S. Dissimilar joining of AA2024 aluminum studs and AZ80 magnesium plates by high-speed solid-state welding. J Mater Process Technol. 2014;214:477–484. Available from: https://doi.org/10.1016/j.jmatprotec.2013.10.005
Sridharan N, Isheim D, Seidman D, Babu S. Colossal super saturation of oxygen at the iron-aluminum interfaces fabricated using solid state welding. Scr Mater. 2017;130:196–199. Available from: https://doi.org/10.1016/j.scriptamat.2016.11.040
Golbabaei F, Khadem M. Air pollution in welding processes—Assessment and control methods. Curr Air Qual Issues. 2015:33–63. Available from: https://www.intechopen.com/chapters/48086
Popović O, Prokić-Cvetković R, Burzić M, Lukić U, Beljić B. Fume and gas emission during arc welding: Hazards and recommendations. Renew Sustain Energy Rev. 2014;37:509–516. Available from: https://doi.org/10.1016/j.rser.2014.05.076
Zhan M, Guo K, Yang H. Advances and trends in plastic forming technologies for welded tubes. Chin J Aeronaut. 2016;29:305–315. Available from: https://doi.org/10.1016/j.cja.2015.10.011
Akca E, Gürsel A. Solid state welding and application in the aeronautical industry. Period Eng Nat Sci. 2016;4:1–8. Available from: https://doi.org/10.21533/pen.v4i1.46
Nassiri A, Abke T, Daehn G. Investigation of melting phenomena in solid-state welding processes. Scr Mater. 2019;168:61–66. Available from: https://www.scinapse.io/papers/2942789837
Yildirim S, Kelestemur MH. A study on the solid-state welding of boron-doped Ni3Al–AISI 304 stainless steel couple. Mater Lett. 2005;59:1134–1137. Available from: https://doi.org/10.1016/j.matlet.2004.08.042
Khedr M, Hamada A, Järvenpää A, Elkatatny S, Abd-Elaziem W. Review on the solid-state welding of steels: diffusion bonding and friction stir welding processes. Metals. 2022;13(1):54. Available from: https://doi.org/10.3390/met13010054
Aleem HAA. Study on bonding of dissimilar metals by ultrasonic bonding and materials evaluation of the bonds [dissertation]. Kitakyushu (Japan): Kyushu Institute of Technology; 2004.
Kurt B. The interface morphology of diffusion-bonded dissimilar stainless steel and medium carbon steel couples. J Mater Process Technol. 2007;190:138–141. Available from: https://doi.org/10.1016/j.jmatprotec.2007.03.063
Yılmaz O. Effect of welding parameters on diffusion bonding of type 304 stainless steel–copper bimetal. Mater Sci Technol. 2001;17:989–994. Available from: https://doi.org/10.1179/026708301101510834?urlappend=%3Futm_source%3Dresearchgate.net%26utm_medium%3Darticle
Li P, Wang L, Yan S, Meng M, Xue K. Temperature effect on the diffusion welding process and mechanism of B2–O interface in the Ti2AlNb-based alloy: A molecular dynamics simulation. Vacuum. 2020;173:109118. Available from: https://doi.org/10.1016/j.vacuum.2019.109118
AlHazaa A, Haneklaus N. Diffusion bonding and transient liquid phase (TLP) bonding of type 304 and 316 austenitic stainless steel—A review of similar and dissimilar material joints. Metals. 2020;10:613. Available from: https://doi.org/10.3390/met10050613
Kim SJ, Lee CG, Lee TH, Oh CS. Effect of Cu, Cr, and Ni on mechanical properties of 0.15 wt.% C TRIP-aided cold rolled steels. Scr Mater. 2003;48:539–544. Available from: https://doi.org/10.1016/S1359-6462(02)00477-3
Zhang C, Li H, Li M. Formation mechanisms of high-quality diffusion-bonded martensitic stainless steel joints. Sci Technol Weld Join. 2015;20:115–122. Available from: https://doi.org/10.1179/1362171814Y.0000000258?urlappend=%3Futm_source%3Dresearchgate.net%26utm_medium%3Darticle
Noh S, Kasada R, Kimura A. Solid-state diffusion bonding of high-Cr ODS ferritic steel. Acta Mater. 2011;59:3196–3204. Available from: https://doi.org/10.1016/j.actamat.2011.01.059
Shi Y, Liu J, Yan Y, Xia Z, Lei Y, Guo F, Li X. Creep properties of composite solders reinforced with nano- and microsized particles. J Electron Mater. 2008;37:507–514.
Hull D, Rimmer D. The growth of grain-boundary voids under stress. Philos Mag. 1959;4:673–687. Available from: https://doi.org/10.1080/14786435908243264
Kurt B, Orhan N, Ozel S. Interface microstructure of diffusion-bonded austenitic stainless steel and medium carbon steel couple. Sci Technol Weld Join. 2007;12:197–201. Available from: https://doi.org/10.1179/174329307X175164
Bhanumurthy K, Fotedar RK, Joyson D, Kale GB, Pappachan AL, Grover AK, Krishnan J. Development of tubular transition joints of aluminium/stainless steel by deformation diffusion bonding. Mater Sci Technol. 2006;22(3):321–330. Available from: https://doi.org/10.1179/026708306X81522
Chen G, Tan T, Guo Y, Wang H, Liu Y, Pan H. An investigation on diffusion bonding of Mg/Al dissimilar metals using Zn-Bi alloy as interlayer. Mater Lett. 2023;349:134827. Available from: https://doi.org/10.1016/j.matlet.2023.134827
Bedjaoui W, Boumerzoug Z, Delaunois F. Solid-state diffusion welding of commercial aluminum alloy with pure copper. Int J Automot Mech Eng. 2022;19(2). Available from: https://doi.org/10.15282/ijame.19.2.2022.09.0751
Safarzadeh A, Paidar M, Youzbashi-Zade H. A study on the effects of bonding temperature and holding time on mechanical and metallurgical properties of Al–Cu dissimilar joining by DFW. Trans Indian Inst Met. 2017. Available from: https://doi.org/10.1007/s12666-016-0867-y
Nadermanesh N, Azizi A, Manafi S. Mechanical and microstructure property evaluation of diffusion bonding of 5083, 6061, and 7075 aluminium to AZ31 magnesium using Cu interlayer. Proc Inst Mech Eng B J Eng Manuf. 2021;235(13):2118–2131. Available from: https://doi.org/10.1177/09544054211014489
Saad AJ, Triyono T, Agus S, Supriyanto N, Muhayat, Yuliadi Z. Effect of holding time on the diffusion behavior at the interface of dissimilar metals joint between aluminum and carbon steel joint using element promoter. Mod Appl Sci. 2014;8(5):1–?. Available from: https://doi.org/10.5539/mas.v8n5p1
Azizi A, Alimardan H. Effect of welding temperature and duration on properties of 7075 Al to AZ31B Mg diffusion bonded joint. Trans Nonferrous Met Soc China. 2016. Available from: https://doi.org/10.1016/S1003-6326(16)64091-8
Ding Y, Zhang S, Wu B, Hao J. Sequential process of diffusion bonding and annealing on dissimilar welding of Mg/Al alloys. Adv Mater Sci Eng. 2021;2021:6691422. Available from: https://doi.org/10.1155/2021/6691422
Kadhim ZD, Al-Azzawi AI, Al-Janabi SJ. Effect of the diffusion bonding conditions on joints strength. J Eng Sustain Dev. 2009;13(1):179–188. Available from: https://www.researchgate.net/publication/337209506_Effect_of_the_Diffusion_Bonding_Conditions_on_Joints_Strength
Zhang C, Li H, Li M. Formation mechanisms of high-quality diffusion bonding martensitic stainless joints. Sci Technol Weld Join. 2015;20:115–122. Available from: https://doi.org/10.1179/1362171814Y.0000000258?urlappend=%3Futm_source%3Dresearchgate.net%26utm_medium%3Darticle
Shirzadi AA, Zhang C, Mughal MZ, Xia P. Challenges and latest developments in diffusion bonding of high-magnesium aluminium alloy (Al-5056/Al-5A06) to stainless steels. Metals. 2022;12(7):1193. Available from: https://doi.org/10.3390/met12071193
Samavatian M, Zakipour S, Paidar M. Effect of bonding pressure on microstructure and mechanical properties of Ti-6Al-4V diffusion-bonded joint. Weld World. 2017;61:69–74.
Elsa M, Khorram A, Ojo OO, Paidar M. Effect of bonding pressure on microstructure and mechanical properties of aluminium/copper diffusion-bonded joint. Sadhana. 2019;44:1–9. Available from: https://link.springer.com/article/10.1007/s12046-019-1103-3
Kazakov VN. Diffusion bonding of materials. Oxford: Pergamon Press; 1985;157–170. Available from: https://www.sciencedirect.com/book/edited-volume/9780080325507/diffusion-bonding-of-materials
Thirunavukarasu G, Murugan B, Chatterjee S, Kundu S. Influence of welding pressure on diffusion welded joints using an interlayer. Weld J. 2017. Available from: https://www.semanticscholar.org/paper/Influence-of-Welding-Pressure-on-Diffusion-Welded-Thirunavukarasu-Murugan/427aa92cc7c7667f92c05434f3704a9c90541ea1
Navab K, Seyedi Niaki K, Vahdat E, et al. Effect of pressure and deep cryotreatment on the strength of diffusion bonds of St37–1.2542 dissimilar steels. Weld World. 2018. Available from: https://link.springer.com/article/10.1007/s40194-018-0580-z
Abdulaziz N, Alhazaa A, Haneklaus N, Almutairi Z. Impulse pressure-assisted diffusion bonding (IPADB): Review and outlook. Metals. 2021;11(2):323. Available from: https://doi.org/10.3390/met11020323
Ürkmez N, Yakut R, Alp E. The effects of welding pressure and reinforcement ratio on welding strength in diffusion-bonded AlMg3/SiCp composites. Eur J Technol. 2020. Available from: https://doi.org/10.36222/ejt.686373
Criado M, Sinha A, Roy J, Ohodnicki N, Tondravi H, Fischer A, Almarza AJ, Kuhn HA, Kumta PN. Understanding the effects of surface finish on diffusion bonding of AZ31 alloys. J Weld Join. 2023. Available from: https://www.e-jwj.org/upload/jwj-2023-41-5-1.pdf
Andrzejewski H, Badawi KF, Rolland B. The roughness in the diffusion welding of Ti-6Al-4V alloy. Weld J. 1993.
Wei Y, Zhang S, Jia L, Li Q, Ma M. Study on the influence of surface roughness and temperature on the interface void closure and microstructure evolution of stainless steel diffusion bonding joints. Metals. 2024;14(7):812. Available from: https://doi.org/10.3390/met14070812
Ojard GC, Rehbein DK, Buck O. Bond strength evaluation in dissimilar materials. Rev Prog Quant Nondestruct Eval. 1991;10B:1383–1390. Available from: https://dr.lib.iastate.edu/server/api/core/bitstreams/afb9a838-d427-4338-a41f-68a04ba4f7a2/content
Ohashi O, Hashimoto T. Study on diffusion bonding. J Jpn Soc Mech Eng. 1976;45(8).
Tensi HM, Wittmann M. Effects of surface finish on the solid state welding of high strength aircraft and aerospace aluminium alloys. In: Solid State Welding of Metals. 1990. Available from: https://link.springer.com/chapter/10.1007/978-94-009-0773-7_27
Wu GQ, Li ZF, Luo GX, Huang Z. The effects of various finished surfaces on diffusion bonding. Model Simul Mater Sci Eng. 2008;16(8):085006. Available from: https://iopscience.iop.org/article/10.1088/0965-0393/16/8/085006
Fitzpatrick G, Broughton T. Diffusion bonding aeroengine components. Def Sci J. 1988;38:477–485. Available from: https://cdn.ymaws.com/titanium.org/resource/resmgr/ZZ-WCTP1988-VOL3/1988_Vol.3-1-V-The_Diffusion.pdf
Shirzadi A, Wallach E. New method to diffusion bond superalloys. Sci Technol Weld Join. 2004;9:37–40. Available from: https://www.scilit.com/publications/2502d1a042f3e33fa5038f31ca9afd7c
Ghoshouni AAS, Wallach ER. Surface treatment of oxidizing materials. Washington (DC): Google Patents; 2003. Available from: https://patents.google.com/patent/US6669534B2/en
Zuruzi AS. Effects of surface roughness on the diffusion bonding of Al alloy 6061 in air. Mater Sci Eng A. 1999;270:244–248. Available from: https://doi.org/10.1016/S0921-5093(99)00188-4
Nami H, Halvaee A, Adgi H. Transient liquid phase diffusion bonding of AlMg2Si metal matrix composite. Mater Des. 2011;32:3957–3965. Available from: https://doi.org/10.1016/j.matdes.2011.02.003
Lee YS, Lim CH, Lee CH, Seo KW, Shin SY, Lee CH. Diffusion bonding of Al 6061 alloys using a eutectic reaction of Al-Ag-Cu. Key Eng Mater. 2005;297–300:2772–2777. Available from: https://doi.org/10.4028/0-87849-978-4.2772
Maity J, Pal TK. Transient liquid-phase diffusion bonding of aluminum metal matrix composite using a mixed Cu-Ni powder interlayer. J Mater Eng Perform. 2012;21:1232–1242. Available from: https://link.springer.com/article/10.1007/s11665-011-0037-7
Nami H, Halvaee A, Adgi H, Hadian A. Investigation on microstructure and mechanical properties of diffusion bonded Al/Mg2Si metal matrix composite using copper interlayer. J Mater Process Technol. 2010;210:1282–1289. Available from: https://doi.org/10.1016/j.jmatprotec.2010.03.015
Shirzadi AA, Wallach ER. Novel method for diffusion bonding superalloys and aluminium alloys. Mater Sci Forum. 2005;502:431–436. Available from: https://doi.org/10.4028/www.scientific.net/MSF.502.431
Shirzadi AA, Assadi H, Wallach ER. Interface evolution and bond strength when diffusion bonding materials with stable oxide films. Surf Interface Anal. 2001;31:609–618. Available from: https://www.phase-trans.msm.cam.ac.uk/2005/surface.science.pdf
Wu F, Zhou WL, Zhao B, Hou HL. Interface microstructure and bond strength of 1420/7B04 composite sheets prepared by diffusion bonding. Rare Met. 2018;7:613–620. Available from: https://doi.org/10.1007/s12598-018-1065-3
Wu F, Zhou W, Han Y, Fu X, Xu Y, Hou H. Effect of alloying elements gradient on solid-state diffusion bonding between aerospace aluminum alloys. Materials. 2018;11:1446. Available from: https://doi.org/10.3390/ma11081446
Venugopal S, Seeman M, Seetharaman R, Jayaseelan V. The effect of bonding process parameters on the microstructure and mechanical properties of AA5083 diffusion-bonded joints. Int J Lightweight Mater Manuf. 2022;5(4):555–563. Available from: https://doi.org/10.1016/j.ijlmm.2022.07.003
Chen G, Tan T, Guo Y, Wang H, Liu Y, Pan H. An investigation on diffusion bonding of Mg/Al dissimilar metals using Zn-Bi alloy as interlayer. Mater Lett. 2023;349:134827. Available from: https://doi.org/10.1016/j.matlet.2023.134827
Wang H, Paidar M, Kumar NK, Seif ElDin HM, Kannan S, et al. Influence of bonding time during diffusion bonding of Ti–6Al–4V to AISI 321 stainless steel on metallurgical and mechanical properties. Vacuum. 2024;222:113072. Available from: https://doi.org/10.1016/j.vacuum.2024.113072
Venugopal S, Seeman M, Seetharaman R, Jayaseelan V. The effect of bonding process parameters on the microstructure and mechanical properties of AA5083 diffusion-bonded joints. Int J Lightweight Mater Manuf. 2022;5(4):555–563. Available from: https://doi.org/10.1016/j.ijlmm.2022.07.003
Kadhim ZD, Al-Azzawi AI, Al-Janabi SJ. Effect of the diffusion bonding conditions on joints strength. J Eng Sustain Dev. 2009;13(1):179–188. Available from: https://www.researchgate.net/publication/337209506_Effect_of_the_Diffusion_Bonding_Conditions_on_Joints_Strength
Lin J, Lei Y, Lu L, Fu H, Guo F. Effect of temperature and zinc coating on interfacial bonding between steel and aluminum dissimilar material. Procedia Manuf. 2019;37:273–278. Available from: https://doi.org/10.1016/j.promfg.2019.12.047
Negemiya A, Selvarajan R, Sonar T. Effect of diffusion bonding time on microstructure and mechanical properties of dissimilar Ti6Al4V titanium alloy and AISI 304 austenitic stainless steel joints. Mater Test. 2023;65(1):77–86. Available from: https://doi.org/10.1515/mt-2022-0209?urlappend=%3Futm_source%3Dresearchgate.net%26utm_medium%3Darticle
Suzuki KT, Sato YS, Tokita S. Rapid joining of commercial-purity Ti to 304 stainless steel using Joule heating diffusion bonding: Interfacial microstructure and strength of the dissimilar joint. Metals. 2020;10(12):1689. Available from: https://doi.org/10.3390/met10121689
Zhang J, Shang Y, Dong YR, Pei Y, Li S, Gong S. The crack initiation and strengthening mechanism in FGH96 solid-state diffusion bonding joint by quasi-in-situ SEM-DIC and EBSD. Mater Today Commun. 2022. Available from: https://doi.org/10.1016/j.mtcomm.2022.103689
Shu X, Li F, Xuan Z, Tu S, Yu R. Interfacial failure mechanism of 316L stainless steel diffusion bonded joints. 2013. Available from: https://www.semanticscholar.org/paper/Interfacial-Failure-Mechanism-of-316LSS-Diffusion-Li-Xuan/b7b8b3872ce1a745329962605ca68817676ea09e
Li Y, Li S. Quality evaluation of diffusion bonded joints by electrical resistance measuring and microscopic fatigue testing. Chin J Mech Eng. 2011. Available from: https://doi.org/10.3901/CJME.2011.02.187
Zhang J, Shang Y, Dong YR, Pei Y, Li S, Gong S. The crack initiation and strengthening mechanism in FGH96 solid-state diffusion bonding joint by quasi-in-situ SEM-DIC and EBSD. Mater Today Commun. 2022. Available from: https://doi.org/10.1016/j.mtcomm.2022.103689
Sung H, Kim C, Kim C, Jang J. Diffusion bonding of a cold-worked Ni-base superalloy. 2018. Available from: https://doi.org/10.1115/ETAM2018-6716
Dong JH, Liu H, Ji SD, Yan DJ, Zhao HX. Diffusion bonding of Al-Mg-Si alloy and 301L stainless steel by friction stir lap welding using a Zn interlayer. Materials. 2022;15(3):696. Available from: https://doi.org/10.3390/ma15030696
Chandrappa K, Kumar A, Shubham K. Current trends in diffusion bonding of a titanium alloy to a stainless steel with an aluminium alloy interlayer. 2021. Available from: https://doi.org/10.9734/bpi/aaer/v4/7649D
Akca E, Gursel A. A review on superalloys and IN718 nickel-based INCONEL superalloy. Period Eng Nat Sci. 2015;3:15–27. Available from: https://doi.org/10.21533/pen.v3i1.43
Messler RW. Principles of welding: Processes, physics, chemistry, and metallurgy. Singapore: John Wiley & Sons; 1999. Available from: https://onlinelibrary.wiley.com/doi/book/10.1002/9783527617487
Kundu S, Ghosh M, Laik A, Bhanumurthy K, Kale GB, Chatterjee S. Diffusion bonding of commercially pure titanium stainless steel using copper interlayer. Mater Sci Eng A. 2005;407:154–160. Available from: https://doi.org/10.1016/j.msea.2005.07.010
Barrena MI, Matesanz L, Gómez de Salazar JM. All2O3/Ti6Al4V diffusion bonding joints using Ag-Cu interlayer. Mater Charact. 2009;60(11):1263–1267. Available from: https://doi.org/10.1016/j.matchar.2009.05.007
Barrena MI, Gómez de Salazar JM, Merino N, Matesanz L. Characterization of WC-Co/Ti6Al4V diffusion bonding joints using Ag as interlayer. Mater Charact. 2008;59(10):1407–1411. Available from: https://doi.org/10.1016/j.matchar.2007.12.008
Rahman AHME, Cavalli MN. Diffusion bonding of commercially pure Ni using Cu interlayer. Mater Charact. 2012;69:90–96. Available from: https://doi.org/10.1016/j.matchar.2012.04.010
Lin J, Lei Y, Lu L, Fu H, Guo F. Effect of temperature and zinc coating on interfacial bonding between steel and aluminum dissimilar materials. Procedia Manuf. 2019;37:273–278. Available from: https://doi.org/10.1016/j.promfg.2019.12.047
Zhang Y, Long B, Meng K, Gohkman A, Cui Y, Zhang Z. Diffusion bonding of Q345 steel to zirconium using an aluminum interlayer. J Mater Process Technol. 2020;275:116352. Available from: https://doi.org/10.1016/j.jmatprotec.2019.116352
Zhang Z, Li J, Liu K, Wang J, Jian S, Xu C, et al. Diffusion bonding, brazing, and resistance welding of zirconium alloys: A review. J Mater Res Technol. 2023. Available from: https://doi.org/10.1016/j.jmrt.2023.07.182
Hirose A, Matsui F, Imaeda H, Kobayashi KF. Interfacial reaction and strength of dissimilar joints of aluminum alloys to steels for automobile applications. Mater Sci Forum. 2005;475:349–352. Available from: https://doi.org/10.4028/www.scientific.net/MSF.475-479.349