Mini Review

Modeling of low calorific gas burning in a deficient oxygen environment and high-temperature oxidizer

Jan Stąsiek*, Marcin Jewartowski, Jacek Baranski and Jan Wajs

Published: 15 March, 2023 | Volume 6 - Issue 1 | Pages: 027-034

It is planned to carry out a comprehensive experimental and theoretical study on the high temperature of low calorific gas combustion with oxygen-deficient oxidizers. The experimental research will be performed using the experimental facility with a combustion chamber. The oxygen concentration in combustion oxidizers will be varied from 21% by volume (normal) air to 2%. The test combustion chamber will be fed with propane or methane as the reference fuel, then with low calorific fuels as test gases obtained by mixing various combustible components, e.g. H2, CH4, CO, and neutral gases, e.g. N2, CO2. Gaseous fuels prepared in this way will be burned in the atmosphere of a deficient oxidizer with a temperature changing from 800 °C to 
1100 °C. Oxidizers will be heated up to a certain temperature using two methods: by flue gas heat exchanger and kanthal rod electric preheater. Different burner geometry will be used. The burner will be equipped with annular swirl vanes for co-axial or under different angles, fuel, and oxidizers flow to have a high swirl number achieved by flow aerodynamics and mixing. Experimental data will be verified with numerical simulations with the use of ANSYS CFD Fluent code.

Read Full Article HTML DOI: 10.29328/journal.ijpra.1001050 Cite this Article Read Full Article PDF


  1. Weber R, Gupta AK, Mochida S. High temperature air combustion (HiTAC): How it all started for applications in industrial furnaces and future prospects. Applied Energy. 2020; 278:115551.
  2. Hasegawa T, Tanaka R, Niioka T. The 1st Asia-Pacific Conference on Combustion. Osaka, Japan. 1997; 290-293.
  3. Kishimoto K, Watanabe Y, Kasahara M, Hasegawa T, Tanaka R. The 1st Asia-Pacific Conference on Combustion, Osaka, Japan. 1997; 468-471.
  4. Amagai K, Arai M. RAN95. Int. Symposium on Advanced Energy Conversion Systems and Related Technologies. Nagoya. 1995; 703-710.
  5. Kitagawa K, Konishi N, Arai N, Gupta AK. FACT-Vol.22, Int. Joint Power Generation Conference. ASME. 1998; 1: 239-242.
  6. Isiguro T, Tsuge S, Furuhata T, Kitagawa K, Aral N, Hasegawa T, Tanaka R. Gupta AK. Homogenization and stabilization during combustion of hydrocarbons with preheated air. Symposium (International) on Combustion. 1998; 27: 3205-3213.
  7. Plessing T, Peters N, Wunning JG. Laseroptical investigation of highly preheated combustion with strong exhaust gas recirculation. Symposium (International) on Combustion. 1998; 27: 3197-3204.
  8. Gupta AK, Li Z. IJPGC. ASME EC. 1997; 5.
  9. Bolz S, Gupta AK. FACT-Vol.22. Int Joint Power Generation Conference. ASME. 1998; 1: 193-205.
  10. Gupta AK, Bolz S, Hasegawa T. Effect of Air Preheat Temperature and Oxygen Concentration on Flame Structure and Emission. Journal of Energy Resources Technology. 1999; 121:209-216.
  11. Mochida S, Hasegawa T. Proceedings of the 2nd International Seminar on High-Temperature Combustion in Industrial Furnaces. Jernkontoret-KTH, Stockholm, Sweden. 2000.
  12. Lille S, Dobski T, Blasiak W. Visualization of Fuel Jet in Conditions of Highly Preheated Air Combustion. AIAA Journal of Propulsion and Power. 2000; 16(4): 595-600.
  13. Lille S, Blasiak W, Jewartowski M. Experimental study of the fuel jet combustion in high temperature and low oxygen content exhaust gases. Energy. 2005; 30( 2-4): 373-384.
  14. Fujimori T, Riechelmann D, Sato J. 1st ASPAC, Osaka, Japan, May 1997.
  15. Sato J. 1st ASPAC, Osaka, Japan, May 12-15, 1997.
  16. Blasiak W, Szewczyk D, Dobski T. Proceedings of IJPGC’01, paper FACT-19048, New Orleans, USA, 4-7 June 2001.
  17. Rota R, Guarneri F, Gelosa D, Effuggi A, Rabaioli M. 4th HTACG symposium, Rome, November, 2001.
  18. Mochida S, Hasegawa T, Tanaka R. RAN95, Int. Symposium on Advance Energy Conversion Systems and Related Technologies, Nagoya, Japan, 4-6 December 1995.
  19. Yuan J, Kobayashi Y. Naruse I, 2nd International High-Temperature Combustion. Symposium, Kaohsiung, Taiwan, January 20-22. 1999.
  20. Dong W, Blasiak W. Large eddy simulation of a single jet flow in highly preheated and dilute air combustion. Archive combustions. 2000; 20.
  21. Yang W, Blasiak W.. 3rd Symposium on Advanced Energy Conversion Systems and Related Technologies. Dec.15-17, 2001, Nagoya, Japan.
  22. Tsuji H, Gupta A, Hasegawa T, Katsuki M, Kishimoto K, Morita M. Energy Conservation to Pollution Reduction. CRC Press LLC, New York, 2003.
  23. Mortberg M, Gupta AK, Blasiak W. Joint Conference on Sustainable Energy and Environment (SSE), December 1-3, 2004, Hua-Hin, Thailand.
  24. Rafidi N, Blasiak W, Jewartowski M, Szewczyk D. IFRF Electronic Combustion Journal, June 2005, article number 20050.
  25. Tian Y, Zhou X, Ji X, Bai J, Yuan L. Applying moderate or intense low-oxygen dilution combustion to a co-axial-jet I-shaped recuperative radiant tube for further performance enhancement. Energy. 2019; 171: 149-160.
  26. Roy R, Gupta AK. Flame structure and emission signature in distributed combustion. Fuel. 2020; 262: 116460.
  27. Karyeyen S, Feser JS, Jahoda E, Gupta AK. Development of distributed combustion index from a swirl-assisted burner. Applied Energy. 2020; 268: 114967.
  28. Khalil AE, Gupta AK. Towards colorless distributed combustion regime. Fuel. 2017; 195: 113–122.
  29. Khalil AEE, Ashwani K, Gupta AK. Fuel property effects on distributed combustion. Fuel. 2016; 171: 116–124.
  30. Schaffel-Mancini N, Mancini M, Szlek A, Weber R. Novel conceptual design of a supercritical pulverized coal boiler utilizing high temperature air combustion (HTAC) technology. Energy. 2010; 35: 2752-2760.
  31. Xing F, Kumar A, Huang Y, Chan S, Ruan C, Gu S, Fan X. Flameless combustion with liquid fuel: A review focusing on fundamentals and gas turbine application. Applied Energy. 2017; 193: 28-51.
  32. Khidr KI, Eldrainy YA, EL-Kassaby MM. Towards lower gas turbine emissions: Flameless distributed combustion. Renewable and Sustainable Energy Reviews. 2017; 67: 1237–1266.
  33. Perpignan AAV, Rao AG, Roekaerts DJEM. Flameless combustion and its potential towards gas turbines. Progress in Energy and Combustion Science. 2018; 69: 28-62.
  34. Stasiek J, Jewartowski M, Yang W. Small Scale Gasification of Biomass and Municipal Wastes for Heat and Electricity Production using HTAG Technology. E3S Web of Conferences. 2017; 13: 03005.
  35. Stasiek J, Szkodo M. Thermochemical Conversion of Biomass and Municipal Waste into Useful Energy Using Advanced HiTAG/HiTSG Technology. Energies. 2020; 13: 4218.
  36. Stasiek J, Baranski J, Jewartowski M, Wajs J. Gasification of densified biomass (DB) and Municipal solid wastes (MSW) using HTA/SG technology. Processes. 2021; 9: 2178.


Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?