Early Online (Volume - 6 | Issue - 1)

Failure-oriented-accelerated-testing (FOAT) and its role in assuring electronics reliability: review

Published on: 6th January, 2023

A highly focused and highly cost-effective failure-oriented-accelerated-testing (FOAT) suggested about a decade ago as an experimental basis of the novel probabilistic design for reliability (PDfR) concept is intended to be carried out at the design stage of a new electronic packaging technology and when high operational reliability (like the one required, e.g., for aerospace, military, or long-haul communication applications) is a must. On the other hand, burn-in-testing (BIT) that is routinely conducted at the manufacturing stage of almost every IC product is also of a FOAT type: it is aimed at eliminating the infant mortality portion (IMP) of the bathtub curve (BTC) by getting rid of the low reliability “freaks” prior to shipping the “healthy” products, i.e., those that survived BIT, to the customer(s). When FOAT is conducted, a physically meaningful constitutive equation, such as the multi-parametric Boltzmann-Arrhenius-Zhurkov (BAZ) model, should be employed to predict, from the FOAT data, the probability of failure and the corresponding useful lifetime of the product in the field, and, from the BIT data, as has been recently demonstrated, - the adequate level and duration of the applied stressors, as well as the (low, of course) activation energies of the “freaks”. Both types of FOAT are addressed in this review using analytical (“mathematical”) predictive modeling. The general concepts are illustrated by numerical examples. It is concluded that predictive modeling should always be conducted prior to and during the actual testing and that analytical modeling should always complement computer simulations. Future work should be focused on the experimental verification of the obtained findings and recommendations.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat

The time and the growth in physics

Published on: 19th January, 2023

In this article, we made a research on the subject of Time and Growth. In the life, the Growth is seen as the increase of mass which operates during a certain period. In physics, it is the same. By the Growth, a physical body gets its density increased. The goal of this article is to calculate or predict the energy and force that a physical system can have at its total Growth. To study the Growth, we have defined some equations which help to evaluate the Growth internal force and energy. By the same way, we have also discovered that all physical systems in the Universe are connected by the same interaction. This interaction leads to the loss of density or mass. The Time is the consequence of its manifestation. For studying the effect of this interaction, we have calculated the density of the Universe. We found that the density of the Universe is equal to the density of a photon. In other words, the Universe is a huge photon. That means, like a photon, the Universe does not know the Time. It also means that the Universe is eternal. Its Expansion (not its growth) is due by the fact that, at the moment small systems inside to it grow, the Universe maintains its density constant like a photon. Do not confuse Growth and Expansion. The Growth is the increase of the density; and the Expansion is the increase of the volume without the change of density. The Universe does not know the Growth, it knows the Expansion. All these conclusions are detailed in the development of this article.
Cite this ArticleCrossMarkPublonsHarvard Library HOLLISGrowKudosResearchGateBase SearchOAI PMHAcademic MicrosoftScilitSemantic ScholarUniversite de ParisUW LibrariesSJSU King LibrarySJSU King LibraryNUS LibraryMcGillDET KGL BIBLiOTEKJCU DiscoveryUniversidad De LimaWorldCatVU on WorldCat
Help ?