Abstract

Research Article

Electronic and Thermo-Dynamical Properties of Rare Earth RE2X3 (X=O, S) Compounds: A Chemical Bond Theory

Pooja Yadav, DS Yadav* and DV Singh

Published: 24 April, 2024 | Volume 7 - Issue 1 | Pages: 048-052

The electrical, mechanical, and thermodynamic properties of cubic structured rare earth sesqui-chalcogenides RE2X3 (RE = La-Lu, X = O, S) are examined in this work using the chemical bond theory of solids. For these materials, the values of the homopolar gaps (Eh), ionic gaps (Ec), and average energy gaps (Ep) have been assessed. It has been discovered that the calculated values of the homopolar gap (Eh) and average energy gap (Ep) are in great agreement with the values derived from the Penn and Phillips models. The electrical, mechanical, and thermodynamic properties of these materials (RE2O3), such as their bulk modulus and heat of formation, have been estimated using the bond ionicity values. The computed values accord very well with the theoretical results that have been published thus far.
PACS No.: 71.20.Eh, 71.15.Mb, 61.50.Ks, 71.15.Mb

Read Full Article HTML DOI: 10.29328/journal.ijpra.1001083 Cite this Article Read Full Article PDF

Keywords:

RE2O3 and RE2S3; Electronic properties; Mechanical properties; Thermodynamic properties

References

  1. Kitai AK. Oxide phosphor and dielectric thin films for electroluminescent devices. Thin Solid Films. 2003; 445:367.
  2. Barrera EW, Pujol MC, Diza F, Choi SB. Emission properties of hydrothermal Yb3 +, Er3 + and Yb3 +, Tm3 + -codoped Lu2O3 nanorods: upconversion, cathodoluminescence and assessment of waveguide behavior. Nanotechnology. 2011; 22:075205.
  3. Andreeva D, Ivanov I, Ilieva L. Gold catalysts supported on ceria doped by rare earth metals for water gas shift reaction: Influence of the preparation method. Appl. Catal. A. 2009; 357:159.
  4. Pan TM, Hung WS. Physical and electrical characteristics of a high-k Yb2O3 gate dielectric. Appl. Surf. Sci. 2009; 255:4979.
  5. Zelmon DE, Nothridge JM, Haynes ND. Appl. Opt. 2013; 52:3825.
  6. Orlovskaya N, Lukich S, Subhash G. Mechanical properties of 10 mol% Sc2O3–1 mol% CeO2–89 mol% ZrO2 ceramics. J. Power Sources. 2010; 195:2774.
  7. Azimi G, Dhiman R, Kwon H M. Hydrophobicity of rare-earth oxide ceramics. Varanasi KK. Nat. Mater. 2013; 12:315.
  8. Zinkevich M 2007 Prog. in Material Science 52 7597
  9. Goldschmidt V M, Ulrich E and Barth T. A Theoretical Study of Binary and Ternary Hydride-Bonded Complexes N(Beh2)...X with N = 1 or 2 and X = K+ or Ca+2. Skrifter Norske Videnskaps-Akadoslo, I: Mat. Naturev, Kl.5. 2011.
  10. Petit L, Svane A, Szotek Z, Temmerman WM. First-principles study of rare-earth oxides. Phys. Rev. B. 2005; 72:205118.
  11. Abrashev M V, Todorov N D, Geshev J. Raman spectra of R2O3 (R—rare earth) sesquioxides with C-type bixbyite crystal structure: A comparative study. J. Appl. Phys. 2014; 116:103508.
  12. Sheng J, Gang B L, Jing L. The Phase Transition of Eu2O3 under High Pressures. Chin. Phys. Lett. 2009; 26:076101.
  13. Hirosaki N, Ogata S, Kocer C. Ab initio calculation of the crystal structure of the lanthanide Ln2O3 sesquioxides. J. Alloys Compounds. 2003; 351:31-34.
  14. Xue D, Betzler K, Hesse H. Dielectric constants of binary rare-earth compounds. J. Phys.: Condens. Matter. 2000; 12:3113.
  15. Rahm M, Skorodumova NV. Phase stability of the rare-earth sesquioxides under pressure. Phys. Rev. B. 2009; 80:104105.
  16. Remay H. Introduction. Home Inorganic Reactions in Water Chapter. Inorganic Chemistry. 1956; 2:247.
  17. (a). Jiang S, Liu J, Li X. Structural transformations in cubic Dy2O3 at high pressures. Solid Stat. Comm. 2013; 169:37-41.

(b). Jiang S, Liu J, Li X. Phase transformation of Ho2O3 at high pressure. J. Appl. Phys. 2011; 110:013526.

(c). Jiang S, Liu J, Lin C. Pressure-induced phase transition in cubic Lu2O3. J. Appl. Phys. 2010; 108:083541.

  1. Yadav DS. Electronic properties of aluminum, gallium and indium pnictides. Phys. Scr. 2010; 82:65705.
  2. Yadav DS, Verma AS. Electronic, optical, and mechanical properties of AII-BVI semiconductors. International Journal of Modern Physics B, 2012, vol. 26, 1250020.
  3. Singh OP, Gupta VP. Electronic properties of europium chalcogenides (EuO, EuS, EuSe, EuTe). Phys. Stat. Sol. (b). 1985; K153:129.
  4. Singh DV, Gupta VP. Bulk Moduli of Sm, Eu, and Yb Monochalcogenides. Phys. Stat. Sol. 1992; (b) K71:171.
  5. Van-Vechten JA. Quantum Dielectric Theory of Electronegativity in Covalent Systems. I. Electronic Dielectric Constant. Phys. Rev. 1969; 182:891.
  6. Phillips JC. Bonds and Bands in Semiconductors (New York: Academic). 1973.
  7. Penn DR. Wave-Number-Dependent Dielectric Function of Semiconductors. Phys. Rev. 1962; 128:2093.
  8. Zhue VP, Shelykh AI. Sov. Phys. Semiconductor. 1989; 23:245.
  9. Tubbs MR. A Spectroscopic Interpretation of Crystalline Ionicity. Phys. Stat. Solidi. 1970; 41:61.
  10. Pauling L. The Chemical Bonds (Ithaca, NY: Cornell University Press). 1960.
  11. Neumann H. Bulk modulus — volume relationship in alkali halides with rocksalt structure. Cryst. Res. Tech. 1988; 23:531.
  12. Phllips JC, Van-Vechten JA. Phys. Rev. 1970; B 2:2147.
  13. Neumann H. Cryst. Res. Tech. 1983; 18:167.

Figures:

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?