Ground-state bands of doubly even 166Hf Nucleus
Main Article Content
Abstract
This study was carried out to investigate the rotational structure of even-even 166Hf isotopes using the phenomenological fitting, Sood’s semi-empirical formula. The rotational energies from the calculated values were compared to the experimental spectrum. The result shows that in 166Hf, calculated energies fit the experimental values to a remarkable degree of accuracy.
Article Details
Copyright (c) 2020 Hossain I, et al.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Bohr A, Mottelson BR. Collective and Individual-Particle Aspects of Nuclear Structure. Kgl Danske Videnskab. Selskab Mat-fys. Medd. 1953; 27: 1-174.
Feenberg E. Semi-empirical Theory of the Nuclear Energy Surface. Revs Mod Phys. 1947; 19: 233.
Green ES, Engler NA. Mass Surfaces. Phys Rev.1953; 91: 40.
Preston MA, Bhaduri RA. Structure of the Nucleus. Addison-Wesley Publishing Company. 1975.
Saethre O, Hjorth SA, Johnson A, Jägare S, Ryde H, et al. Angular Velocity Expansions of Nuclear Rotational Energies. Nucl Phys A. 1973; 207: 486-512.
Johnson A, Szymański Z. Nuclear Rotation at High Angular Velocities. Physics Reports C Phys Lett. 1973; 7: 181-222.
Stephens FS Jr, Diamond RM, Perlman I, Phys Rev Lett. 1959; 3: 435.
Singh K, Sahota HS. Study of Rotational States in Even-Even Nuclei in the Energy Region A ≥ 228. Ind J Phys. 1985; 59: 57.
Sood PC. Comparative Study of Two Parameter Models for Predicting Rotational Energies in Even-Even Nuclei. Nuclear Data A. 1968; 4: 281-300.
Kumar A, Gunye MR. The Yrast States of The Even Hafnium Isotopes 166-172Hf. J Phys G Nucl Phys. 1980; 6: 229 – 240.
Baglin M, Nucl Data Sheets for A = 166, Nucl Dat Sheets. 2008; 109: 1103-1382.