Renormalization group in physics and beyond
Main Article Content
Abstract
We explain qualitatively in this short paper the essence of the renormalization group, showing that these ideas apply not only in physics but also beyond, forming the foundation of artificial intelligence.
Article Details
Copyright (c) 2025 Jakovac A.

This work is licensed under a Creative Commons Attribution 4.0 International License.
1. https://doi.org/10.1103/PhysicsPhysiqueFizika.2.263
2. Shalizi CR, Moore C. What is a Macrostate? Subjective Observations and Objective Dynamics. arXiv preprint. 2003. Available from: https://doi.org/10.1007/s10701-024-00814-1
3. Kurbucz MT, Pósfay P, Jakovác A. Facilitating time series classification by linear law-based feature space transformation. Sci Rep. 2022;12(1):18026. Available from: https://doi.org/10.1038/s41598-022-22829-2
4. Jakovác A, Telcs A. Representation and abstraction. Mathematics. 2025;13(10):1666. Available from: https://doi.org/10.3390/math13101666
5. Jakovác A, Telcs A. A note on representational understanding. Entropy. 2022;24(9):1313. Available from: https://doi.org/10.3390/e24091313
6. Wilson KG. The renormalization group: Critical phenomena and the Kondo problem. Rev Mod Phys. 1975;47:773–840. Available from: https://doi.org/10.1103/RevModPhys.47.773
7. Wilson KG, Kogut J. The renormalization group and the ε expansion. Phys Rep. 1974;12(2):75–199. Available from: https://doi.org/10.1016/0370-1573(74)90023-4
8. Cardy J. Scaling and Renormalization in Statistical Physics. Cambridge: Cambridge University Press; 1996. Available from: https://doi.org/10.1017/CBO9781316036440
9. Goldenfeld N. Lectures on Phase Transitions and the Renormalization Group. Boca Raton: CRC Press; 1992. Available from: https://doi.org/10.1201/9780429493492
10. Biró TS, Jakovác A. Entropy of Artificial Intelligence. Universe. 2022;8(1):53. Available from: https://doi.org/10.3390/universe8010053
11. Polchinski J. Renormalization and effective lagrangians. Nucl Phys B. 1984;231:269–95. Available from: https://doi.org/10.1016/0550-3213(84)90287-6
12. Rosten OJ. Fundamentals of the exact renormalization group. Phys Rep. 2012;511(4):177–272. Available from: https://doi.org/10.1016/j.physrep.2011.12.003
13. Mehta P, Schwab DJ. An exact mapping between the variational renormalization group and deep learning. arXiv preprint. 2014. Available from: https://doi.org/10.48550/arXiv.1410.3831
14. Bény C. Deep learning and the renormalization group. arXiv preprint. 2013. Available from: https://doi.org/10.48550/arXiv.1301.3124
15. Lin HW, Tegmark M, Rolnick D. Why does deep and cheap learning work so well? J Stat Phys. 2017;168:1223–47. Available from: https://doi.org/10.1007/s10955-017-1836-5
16. Cammarota C. A renormalization group approach to data analysis. Nat Commun. 2020;11:1573. Available from: https://doi.org/10.1038/s41467-020-15353-8
17. Itzykson C, Zuber J-B. Quantum Field Theory. New York: McGraw-Hill; 1980. Available from: https://archive.org/details/quantumfieldtheo0000itzy
18. French RM. Catastrophic forgetting in connectionist networks. Trends Cogn Sci. 1999;3(4):128–35. Available from: https://doi.org/10.1016/s1364-6613(99)01294-2
19. Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu AA, et al. Overcoming catastrophic forgetting in neural networks. Proc Natl Acad Sci U S A. 2017;114(13):3521–6. Available from: https://doi.org/10.1073/pnas.1611835114