Frequency-domain Characterization of Reverse Recovery Charge (QRR) in Commercial 1N4003 pn-Silicon Diodes
Main Article Content
Abstract
The reverse recovery charge (QRR) of silicon pn diodes is traditionally characterized in the time domain. In many technological applications—especially rectification of audio- and RF-range alternating currents—the frequency-domain manifestation of QRR is more relevant. We present a simple, analog frequency-sweep measurement method that reveals QRR-related limitations of rectification efficiency in real time. Using a sinusoidal excitation and oscilloscope frequency-axis mapping, we investigate the frequency ft at which the magnitude of the reverse current equals half that of the forward current. Measurements of 359 nominally identical 1N4003 diodes show a large spread in both forward voltage at 1,1 mA and ft , despite belonging to the same production batch. A Schottky diode reference (1N5711) shows no measurable reverse AC conduction within the tested range, confirming the method’s validity. The approach provides a rapid and didactic alternative to conventional time-domain QRR measurements.
Article Details
Copyright (c) 2025 Wieck MR, et al.

This work is licensed under a Creative Commons Attribution 4.0 International License.
JEDEC Solid State Technology Association. Measurement of Reverse Recovery Time of Power Diodes. JESD282-B. Arlington, VA: JEDEC; 2011.
International Electrotechnical Commission. Semiconductor devices – Discrete devices – Part 2: Rectifier diodes. IEC 60747-2. Geneva: IEC; 2016.
Sze SM, Ng KK. Physics of Semiconductor Devices. 3rd ed. Hoboken (NJ): Wiley; 2007. Available from:
https://www.scirp.org/reference/referencespapers?referenceid=1703614
Moll JL, Haynes JR, Johnston CW. P-N junction switching. Proc IRE. 1958;46(6):1076–1081.
Schroder DK. Semiconductor Material and Device Characterization. Hoboken (NJ): Wiley; 2006. Available from:
https://www.optima.ufam.edu.br/SemPhys/Downloads/Dieter.pdf
Casolaro P, Izzo VV, Giusi GG, Wyrsch NN, Aloisio A. Modeling the diffusion and depletion capacitances of a silicon pn diode in forward bias with impedance spectroscopy. J Appl Phys. 2024;136(11):115702. Available from: https://doi.org/10.1063/5.0230008
Gyawali B, Thapa SK, Barakat A, Yoshitomi K, Pokharel RK. Analysis and design of diode physical limit bandwidth efficient rectification circuit for maximum flat efficiency, wide impedance, and efficiency bandwidths. Sci Rep. 2021;11:19941. Available from:
https://www.nature.com/articles/s41598-021-99405-7
Liang TY, Zakaria NF, Kasjoo SR, Shaari S, Isa MM, Md Arshad MK, Singh AK. Silicon Self-Switching Diode (SSD) as a full-wave bridge rectifier in 5G networks frequencies. Sensors. 2022;22(24):9712. Available from:
https://doi.org/10.3390/s22249712
Muhammad S, Waly MI, AlJarallah NA, Ghayoula R, Negm AS, Smida A, et al. A multiband SSr diode RF rectifier with an improved frequency ratio for biomedical wireless applications. Sci Rep. 2023;13:13246. Available from: https://doi.org/10.1038/s41598-023-40486-x
Orfão B, Abou-Daher M, Zegaoui M, Mateos J, González T, Okada E, et al. GaN Schottky diodes parameter extraction model from S-parameters measurement. In: Proceedings of the 19th European Microwave Integrated Circuits Conference (EuMIC); 2024. p. 375. Available from: https://doi.org/10.23919/EuMIC61603.2024.10732802
Reddaf A, Boudjerda M, Bouchachi I, Babes B, Elrashidi A, AboRas KM, Ali E, Ghoneim SSM, Elsisi M. Modeling of Schottky diode and optimal matching circuit design for low power RF energy harvesting. Heliyon. 2024;10:e27792. Available from:
https://doi.org/10.1016/j.heliyon.2024.e27792
van Nijen DA, Procel P, van Swaaij RACMM, Zeman M, Isabella O, Manganiello P. The nature of silicon PN junction impedance at high frequency. Sol Energy Mater Sol Cells. 2025;282:113383. Available from: https://doi.org/10.1016/j.solmat.2024.113383
Pennisi G, Pulvirenti M, Salvo L, Sciacca AG, Cascino S, Laudani A, Salerno N, Rizzo RS, Rizzo SA. Investigation of SiC MOSFET body-diode reverse recovery and snappy recovery conditions. Energies. 2024;17:2651. Available from: https://doi.org/10.3390/en17112651
Zhang A, Grajal J, López-Vallejo M, McVay E, Palacios T. Opportunities and challenges of ambient radio-frequency energy harvesting. Patterns. 2020;1:100089. Available from:
https://doi.org/10.1016/j.patter.2020.100089
Citroni R, Pucci AR, Cojoc D, Dickmann F, Decker A. Progress in THz rectifier technology: research and perspectives. Nanomaterials. 2022;12:2479. Available from: https://doi.org/10.3390/nano12142479
Wang X, Yu Q, Chen L, Li Y, Zhou P. Qrr reduction in SiC MOSFET structures: experimental and TCAD study. Microelectron J. 2024;126:105798.
Peng H, Gao Y, Huang L, Liu J. 10-W-level microwave rectifier: large-signal S-parameter evaluation. Electronics. 2024;13:2024. Available from: https://doi.org/10.3390/electronics13020423
Botha CJ, Stander T. The effect of temperature variation on the transient response of RF PIN diode limiters for very high frequency applications. IET Microw Antennas Propag. 2024;18:849. Available from: https://doi.org/10.1049/mia2.12508
Zhang M. A modified finite-difference model to the reverse recovery of silicon PIN diodes. Solid-State Electron. 2020;171:107839. Available from: https://doi.org/10.1016/j.sse.2020.107839
Qian C, Wang Z, Zhou D, Ge Y, Zhou Y, Xin X, Shi X. Investigation of reverse recovery phenomenon for SiC MOSFETs in high-temperature applications. IEEE Trans Power Electron. 2023;38:14375. Available from: https://doi.org/10.1109/TPEL.2023.3273351
Nayak DP, Yakala RK, Kumar M, Pramanick SK. Temperature-dependent reverse recovery characterization of SiC MOSFETs’ body diode for switching-loss estimation in a half-bridge. IEEE Trans Power Electron. 2022;37:5574. Available from: https://doi.org/10.1109/TPEL.2021.3128947
Shu J, Sun J, Zheng Z, Chen KJ. Suppressing the reverse-recovery of Si super-junction MOSFET with a low-voltage GaN HEMT in a cascode configuration. In: Proceedings of the 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD); 2023. Available from: https://doi.org/10.1109/ISPSD57135.2023.10147632
Pavan P, Vudumula V, Kotamraju SS, Prasad LLVD, Ramasamy S. Reverse-recovery characteristics of an SiC superjunction MOSFET with a p-type Schottky diode embedded at the drain side for improved reliability. J Comput Electron. 2021;20:548.
Bououd M, Lai Y, Voldoire A, Hoang E, Béthoux O. Mitigating reverse recovery power losses in MOSFET switching cell using extra Schottky diodes — application to voltage-source inverter. Power Electron Devices Components. 2024;100066. Available from:
https://doi.org/10.1016/j.pedc.2024.100066
Xue Z, Zhu M, Cui H, Yang F, Pei Y, Wang L. TCAD modeling of temperature-dependent reverse recovery characteristics of 1.2-kV SiC MOSFETs’ body diode. In: Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE); 2023. Available from:
https://doi.org/10.1109/ECCE53617.2023.10362165
Zhang X, Xu B, Li C, Zhao D, Chen E. RF-to-DC conversion limits: device capacitances, series resistance and achievable bandwidth. IEEE Trans Power Electron. 2024;39:4567.
Zhang M, Banáš S. Accurate diode behavioral model with reverse recovery. Solid-State Electron. 2020;171:107839.
Hua M, Cai X, Yang S, Zhang Z, Wang N, Chen KJ. A multiepi superjunction MOSFET with a lightly doped MOS-channel diode for improving reverse recovery. IEEE Trans Electron Devices. 2021;68:2401.
An A, Hu S. Heterojunction diode-shielded SiC split-gate trench MOSFET with optimized reverse-recovery characteristic and low switching loss. IEEE Access. 2019;7:28592–28596. Available from:
https://doi.org/10.1109/ACCESS.2019.2902246
Peng X, Liu Y, Feng H, Zhang Q, Wang B. Analysis and characterization of the punch-through n-p-n diode for hard-switching power control applications. IEEE Trans Electron Devices. 2023;70:4525–4531. Available from: https://doi.org/10.1109/TED.2023.3294358
Potbhare S, Goldsman N, Lelis A, McGarrity JM, McLean FB, Habersat D. A physical model of high-temperature 4H-SiC MOSFETs including reverse-recovery effects. IEEE Trans Electron Devices. 2022;69:2022.
Zhang F, Li J, Wang R, Zhao S, Chen X. S-parameter based small-signal extraction of diode nonlinear capacitances for GHz rectifiers. IEEE Microw Wireless Compon Lett. 2023;33:145.
Peng P, Zhou H, Sun L, Wang Y. Modeling of device-level reverse recovery dynamics with TCAD: comparison between Si, SiC and GaN. Solid-State Electron. 2024;200:108496.
Mansour A, Elshafai F, Abouissa M, ElHussieny H. Class-E/F2 low-power RF rectifiers: rectification behaviour and DC-output versus frequency. Microelectron Eng. 2023;272:111794.